Hydrogen generation from sodium borohydride via natural materials

##plugins.themes.academic_pro.article.main##

Levent Semiz

Abstract

In this study, the catalytic activity of starch, cellulose and coffee were investigated in the dehydrogenation of sodium borohydride. The hydrogen generation rates of starch, cellulose and coffee were measured as 4.0, 6.7 and 60 ml H2 min-1 g-1 and the activation energies of the reactions were calculated as 27.4, 17.1 and 14.5 kJ mol-1 for  starch, cellulose and coffee respectively. The study showed that natural sources could be used directly as catalysts in the dehydrogenation of chemical hdyrides.

##plugins.themes.academic_pro.article.details##

How to Cite
Semiz, L. (2025). Hydrogen generation from sodium borohydride via natural materials . International Journal of Pioneering Technology and Engineering, 4(01), 37–42. https://doi.org/10.56158/jpte.2025.116.4.01

References

  1. Cong, H., Ren, J., Zhang, D., Xu, F., Wang, X., Wang, Y., … Wu, S. (2023). Catalytic hydrolysis of sodium borohydride for hydrogen generation using g-C3N4/Co–W–B/Ni foam composite catalyst. Journal of Materials Science, 58(2), 787–801.
  2. Beheshti, A. K., Rezaei, M., Alavi, S. M., Akbari, E., & Varbar, M. (2023). Cobalt nanoparticle synthesis through the mechanochemical and chemical reduction method as a highly active and reusable catalyst for H2 production via sodium borohydride hydrolysis process. International Journal of Hydrogen Energy, 51(PC), 661–670.
  3. Zhang, H., Fan, Y., Zhang, J., Xiao, X., & Ouyang, L. (2023). Hydrogen generation and stoichiometric hydrolysis of core–shell Al-Li-NaBH4 composite. Journal of Alloys and Compounds, 939, 168638.
  4. Kaya, C., Özdemir, J. H., Elçiçek, H., Özdemir, O. K., Kökkülünk, G., & Ünlügençoğlu, K. (2023). Enhancing the efficiency of sodium borohydride hydrolysis with a novel CoB-Triton catalyst. International Journal of Hydrogen Energy, 1.
  5. Liu, X., Sun, W., Chen, J., & Wen, Z. (2023). Controllable Electrochemical Liberation of Hydrogen from Sodium Borohydride. Angewandte Chemie - International Edition, 350002.
  6. Min, X., Chai, D., Ding, K., Li, R., & Zhang, X. (2023). Hydrogen generation by hydrolysis of solid sodium borohydride for portable PEMFC applications. Fuel, 350(March), 128777.
  7. Chang, P. C., Lai, J. L., Huang, C. H., & Kuan, Y. Der. (2023). Integration of the PEMFC with a hydrogen production device adopting sodium borohydride and metal cobalt catalyst. International Journal of Hydrogen Energy, 52, 905–916.
  8. Althubiti, N. A., Taha, T. A., Azab, A. A., & Abdelhamid, H. N. (2023). ZnO-based nanocomposites for hydrogen generation via hydrolysis of Borohydride. Journal of Sol-Gel Science and Technology, 106(3), 837–846.
  9. Keskin, M. S., & Ağırtaş, M. S. (2023). Hydrogen production performance and kinetic behavior from sodium borohydride hydrolysis with TiO2-supported Co-Mo-B catalyst. Ionics, 29(9), 3713–3721.
  10. Abdulaziz, F., Latif, S., & Taha, T. A. M. (2024). Preparation of Co–CaCO3 catalysts for improved hydrogen production from sodium borohydride. International Journal of Hydrogen Energy, 56(December 2023), 271–279.
  11. Alshammari, K., Alhassan, S., Alshammari, M., Alshammari, A. H., Alotaibi, T., Mohaymen Taha, T. A., & Henini, M. (2024). Processing of new efficient Cr1-xNaxO3 catalysts for sodium borohydride methanolysis. International Journal of Hydrogen Energy, 53(September 2023), 698–705.
  12. Zhang, E., Xu, R., Wang, L., Chen, J., Zhang, B., & Wang, G. (2023). One-pot synthesis of magnetic copper ferrite nanocubes for hydrogen production by hydrolysis of sodium borohydride. Ceramics International, 49(14), 23464–23470.
  13. Li, Y., Zhou, G., Yin, J., Chen, J., Tang, C., Liu, C., … Zhang, L. (2023). Photo-thermal synergic enhancement of CoxFeAl-LDHs for hydrogen generation from hydrolysis of NaBH4. Applied Surface Science, 610(October 2022), 155325.
  14. Akkus, M. S. (2023). Examination of the catalytic effect of Ni, NiCr, and NiV catalysts prepared as thin films by magnetron sputtering process in the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 48(60), 23055–23066.
  15. Avcı Hansu, T. (2023). Exergy and energy analysis of hydrogen production by the degradation of sodium borohydride in the presence of novel Ru based catalyst. International Journal of Hydrogen Energy, 48(18), 6778–6787.
  16. Alshammari, A. H., Alshammari, K., Alhassan, S., Alshammari, M., Alotaibi, T., Alanzy, A. O., & Taha, T. A. M. (2023). Low temperature sol-gel synthesis of copper zinc ferrite for hydrogen catalytic hydrolysis of sodium borohydride. Materials Chemistry and Physics, 308(February), 128287.
  17. Saka, C., & Balbay, A. (2022). Ethylene glycol as an alternative solvent approach for very efficient hydrogen production from sodium borohydride with phosphoric acid and acetic acid catalysts. International Journal of Hydrogen Energy, 47(19), 10500–10507.
  18. Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), 1–10.
  19. Ye, S., Wang, Y., Wang, C., Cheng, L., Sun, L., & Yan, P. (2023). Robust cellulose fiber/fibrous sepiolite coated RuO2-CoP aerogel as monolithic catalyst for hydrogen generation via NaBH4 hydrolysis. Journal of Colloid and Interface Science, 639, 284–291.
  20. Ye, S., Wang, Y., Du, B., Cheng, L., Sun, L., & Yan, P. (2023). Recoverable sepiolite coated B-CoP/ cellulose hybrid aerogel as monolithic catalysts for hydrogen generation via NaBH4 hydrolysis. Chemical Engineering Journal, 474(April).
  21. Sengel, S. B., Deveci, H., Bas, H., & Butun, V. (2023). Carbon spheres as an efficient green catalysts for dehydrogenation of sodium borohydride in methanol. Catalysis Communications, 177(January), 106650.