Optimization of the Desktop CPU's Straight Heatsink via CFD Simulation by Solidworks Flow Simulation

##plugins.themes.academic_pro.article.main##

Md Nazmul Hasan Dipu
Mahbub Hasan Apu
Pritidipto Paul Chowdhury

Abstract

The straight heatsink is one of the most common heat transfer components used in desktop CPUs to manage the heat generated by the microprocessor. The study aimed to find the optimal fin numbers of the straight heatsink for three different fin thicknesses and compare the masses at these points. For the analysis, the present study used Solidworks® software to create CAD models and perform the CFD simulation. It was found that each of the three different fin thicknesses had a turning point at which the microprocessor’s temperature was at its minimum. The weight of the heatsink was also measured at those turning points. Specifically, the heatsinks with 1 millimeter, 1.5 millimeters, and 2 millimeters thickness had a microprocessor temperature of about 83.52 degrees Celsius, 86.50 degrees Celsius, and 89.25 degrees Celsius, with the weight of approximately 307.80 grams, 388.80 grams, and 448.2 grams. Overall, a 1-millimeter fin thickness with 21 fins configuration for this study was best under the criteria of minimum microprocessor temperature and minimum heatsink mass. Thus, this study successfully demonstrated that optimization of mass and fin thickness of the heatsink was possible to provide better thermal management of the microprocessors of a desktop’s CPU. This study is significant for this era because it provides a panacea for minimum material cost, lightweight, and minimum microprocessor temperature.

##plugins.themes.academic_pro.article.details##

How to Cite
Dipu, M. N. H., Apu, M. H. ., & Chowdhury, P. P. (2025). Optimization of the Desktop CPU’s Straight Heatsink via CFD Simulation by Solidworks Flow Simulation. International Journal of Pioneering Technology and Engineering, 4(01), 1–16. https://doi.org/10.56158/jpte.2025.113.4.01

References

  1. Khattak, Z., & Ali, H. M. (2019). Air cooled heat sink geometries subjected to forced flow: A critical review. International Journal of Heat and Mass Transfer, 130, 141–161.
  2. Sung, G., Kang, H.-M., & Yook, S.-J. (2025). Effect of installing rings on the cooling performance of a pin fin heatsink. International Journal of Thermal Sciences, 210, 109660.
  3. Liu, X., Hao, B., Xie, L., & Zhao, Y. (2025). Research and application of topology optimization on air-cooled heat sinks. Applied Thermal Engineering, 125607.
  4. Patel, H., & Matawala, V. K. (2019). Performance evaluation and parametric optimization of a heat sink for cooling of electronic devices with entropy generation minimization. European Journal of Sustainable Development Research, 3(4).
  5. Armstrong, R., & Fast, D. (2004). Thermal characterization and optimization of a blower heat sink for small form factor micro-computer desktop applications. In The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543) (pp. 659–663). IEEE.
  6. Yu, C.-W., & Webb, R. L. (2001). Thermal design of a desktop computer system using CFD analysis. In Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.01CH37189) (pp. 18–26). IEEE.
  7. Heat Sinks. (2022). In Thermal Design (pp. 45–117). Wiley.
  8. Hajialibabaei, M., Saghir, M. Z., & Bicer, Y. (2023). Comparing the performance of a straight-channel heat sink with different channel heights: an experimental and numerical study. Energies, 16(9), 3825.
  9. Chen, C., Huang, Z., & Li, M. (2024). Study on the effect of fin position on heat dissipation effect of finned heat sinks.
  10. Jones, A., & Darabi, J. (2024). Enhancing thermal performance in a pcm heatsink assembly by incorporating fins and copper oxide nanoparticles. In ASME 2024 Heat Transfer Summer Conference. American Society of Mechanical Engineers.
  11. Jones, A., & Darabi, J. (2024). Effect of fin geometry on the thermal performance of a phase change material heatsink. Applied Thermal Engineering, 236, 121973.
  12. Vallepuga-Espinosa, J., Cifuentes-Rodríguez, J., Gutiérrez-Posada, V., & Ubero-Martínez, I. (2022). Thermomechanical optimization of three-dimensional low heat generation microelectronic packaging using the boundary element method. Mathematics, 10(11), 1913.
  13. Ledezma, G., & Bejan, A. (1996). Heat sinks with sloped plate fins in natural and forced convection. International Journal of Heat and Mass Transfer, 39(9), 1773–1783.
  14. Chang, S. W., Su, L. M., Yang, T. L., & Chiou, S. F. (2004). Enhanced heat transfer of forced convective fin flow with transverse ribs. International Journal of Thermal Sciences, 43(2), 185–200.
  15. Park, K., Oh, P.-K., & Lim, H.-J. (2006). The application of the CFD and Kriging method to an optimization of heat sink. International Journal of Heat and Mass Transfer, 49(19–20), 3439–3447.
  16. Ozturk, E., & Tari, I. (2008). Forced air cooling of cpus with heat sinks: A numerical study. IEEE Transactions on Components and Packaging Technologies, 31(3), 650–660.
  17. Hussain, A. A., Freegah, B., Khalaf, B. S., & Towsyfyan, H. (2019). Numerical investigation of heat transfer enhancement in plate-fin heat sinks: Effect of flow direction and fillet profile. Case Studies in Thermal Engineering, 13, 100388.
  18. Abdelmohimen, M. A. H., Algarni, S., Almutairi, K., Ahmed, G. M. S., Irshad, K., & Irfan, S. A. (2021). Improving heat transfer of plate-fin heat sinks using through rod configurations. Journal of Thermal Science and Engineering Applications, 13(1).
  19. Kalbasi, R., Afrand, M., Alsarraf, J., & Tran, M.-D. (2019). Studies on optimum fins number in PCM-based heat sinks. Energy, 171, 1088–1099.
  20. Mohan, R., & Govindarajan, P. (2011). Experimental and CFD analysis of heat sinks with base plate for CPU cooling. Journal of Mechanical Science and Technology, 25(8), 2003–2012.
  21. Chiu, H.-C., Youh, M.-J., Hsieh, R.-H., Jang, J.-H., & Kumar, B. (2023). Numerical investigation on the temperature uniformity of micro-pin-fin heat sinks with variable density arrangement. Case Studies in Thermal Engineering, 44, 102853.
  22. Koşar, A., & Peles, Y. (2006). Thermal-hydraulic performance of mems-based pin fin heat sink. Journal of Heat Transfer, 128(2), 121–131.
  23. Koşar, A., Mishra, C., & Peles, Y. (2005). Laminar flow across a bank of low aspect ratio micro pin fins. Journal of Fluids Engineering, 127(3), 419–430.
  24. Jassani, A. J. J. Al. (2020). Experimental study for optimum fin spacing of rectangular fin arrangements under the influences of free convection. Journal of Engineering Science and Technology, 15(6), 4075–4090.
  25. Wu, Q. (2020). Evaluating a multi-jet impingement air heat exchanger design for pebb 6000 using solidworks flow simulation. Massachusetts Institute Of Technology.
  26. Micheli, L., Reddy, K. S., & Mallick, T. K. (2016). Thermal effectiveness and mass usage of horizontal micro-fins under natural convection. Applied Thermal Engineering, 97, 39–47.
  27. Çengel, Y. A., & Ghajar, A. J. (2015). Heat_and_mass_transfer (5th ed.).
  28. Balaji, C., Srinivasan, B., & Gedupudi, S. (2021). One-dimensional, steady state heat conduction. In Heat Transfer Engineering (pp. 15–64).
  29. Forsberg, C. H. (2021). Steady-state conduction. In Heat Transfer Principles and Applications (pp. 57–120).
  30. Li, B., Cui, Z., Cao, Q., & Shao, W. (2021). Increasing Efficiency of a Finned Heat Sink Using Orthogonal Analysis. Energies, 14(3), 782.
  31. Sehnalek, S., Zalesak, M., Vincenec, J., Oplustil, M., & Chrobak, P. (2014). Evaluation of solidworks flow simulation byground-coupled heat transfer test cases. Island Santorini: International Conferences: Latest Trends on Systems.
  32. Bistafa, S. R. (2017). On the development of the Navier-Stokes equation by Navier. Revista Brasileira de Ensino de Física, 40(2).
  33. Madhavan, S., P B, R. D., Gundabattini, E., & Mystkowski, A. (2022). Thermal analysis and heat management strategies for an induction motor, a review. Energies, 15(21), 8127.
  34. Ramakrishnan, B., Alissa, H., Manousakis, I., Lankston, R., Bianchini, R., Kim, W., … Fontoura, M. (2021). CPU overclocking: a performance assessment of air, cold plates, and two-phase immersion cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(10), 1703–1715.
  35. Tijani, A. S., & Jaffri, N. B. (2018). Thermal analysis of perforated pin-fins heat sink under forced convection condition. Procedia Manufacturing, 24, 290–298.
  36. Varuvel, E. G., Sonthalia, A., Aloui, F., & Saravanan, C. G. (2023). Basics of heat transfer: convection. In Handbook of Thermal Management Systems (pp. 35–77). Elsevier.
  37. Ökten, E., Kırcı, L., & Kılıçlı, Ö. (2022). Power and thermal analysis of a pcm-cooled photovoltaic thermal system with a 1-d mathematical model for different environmental and boundary conditions: A case study. International Journal of Pioneering Technology and Engineering, 2(02), 193–201.
  38. Abbas, E. F. (2024). An overview of heat sink technology. International Journal of Applied Mechanics and Engineering, 29(4), 1–23.
  39. Intel® CoreTM i9-9900K Processor 16M Cache, up to 5.00 GHz. (2018). Retrieved 17 January 2025, from https://www.intel.com/content/www/us/en/products/sku/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz/specifications.html
  40. Wallossek, I. (2018). Igor’s Lab. Retrieved 17 January 2025, from https://www.igorslab.de/en/intel-core-i9-9900k-i7-9700k-i5-9600k-in-test-review/13/
  41. Kyono, K., Fukunaga, N., Haigo, K., Chiba, S., Nakajo, Y., & Fuchinoue, K. (2002). A constant room temperature of 25°c significantly enhances the efficacy of in-vitro fertilization. Journal of Mammalian Ova Research, 19(3), 128–129.
  42. Dong, D., & Lu, Y.-C. (2023). Working at room temperature. Science, 379(6631), 436–437.
  43. Tochihara, Y., Hashiguchi, N., Yadoguchi, I., Kaji, Y., & Shoyama, S. (2012). Effects of room temperature on physiological and subjective responses to bathing in the elderly. Journal of the Human-Environment System, 15(1), 13–19.
  44. Nallabelli, A., Lujan, H. L., & DiCarlo, S. E. (2024). Pressure never sucks, pressure only pushes: a physiological exploration of the pushing power of pressure. Advances in Physiology Education, 48(3), 558–565.
  45. Sonntag, D. (1982). New values for the thermodynamic parameters of water vapor. Measurement Techniques, 25(9), 764–767.
  46. Wubieneh, T. A., & Tegegne, S. T. (2022). Fabrication and characterization of aluminum (al‐6061) matrix composite reinforced with waste glass for engineering applications. Journal of Nanomaterials, 2022(1).
  47. Senapati, A. K., Abhishek-Kumar, & Anurag-Kumar. (2018). Investigation on mechanical properties of al-6061 alloy based MMC. IOP Conference Series: Materials Science and Engineering, 410, 012016.
  48. Fujipoly New Product Technical Information Sarcon GR25A Series. (2012).
  49. Sosnowski, M. (2018). Computational domain discretization in numerical analysis of flow within granular materials. EPJ Web of Conferences, 180, 02095.
  50. Abu-Zidan, Y., Mendis, P., & Gunawardena, T. (2021). Optimising the computational domain size in CFD simulations of tall buildings. Heliyon, 7(4), e06723.
  51. Azmi, M. Z., & Ito, T. (2020). Artificial potential field with discrete map transformation for feasible indoor path planning. Applied Sciences, 10(24), 8987.
  52. Tu, J., Yeoh, G. H., & Lui, C. (2018). Computational_fluid_dynamics: A practical approach.