Importance of miRNAs in Cancer Therapy and Therapeutic Delivery Approaches

##plugins.themes.academic_pro.article.main##

Esra Nur Gültekin
Sevgi Marakli

Abstract

Uncontrolled cell division and proliferation due to environmental and genetic factors are characteristics of cancer. Despite traditional treatments such as surgery, chemotherapy and radiation therapy, the incidence and mortality rate of cancer increases every year. Therefore, it is necessary to improve new treatment strategies such as microRNA (miRNA). miRNAs are non-coding endogenous RNA molecules with 18-22 nt in length. They regulate important pathways in different cancer types and play active roles in mechanisms such as proliferation, migration, apoptosis and invasion. Due to their functions in the pathogenesis of cancer as oncogenic or tumor suppressors, miRNAs have been currently used as therapeutic agents. However, the limited biological stability, inability to diffuse into the target tissue and their degradability by nucleases of miRNAs are disadvantages of miRNAs. Viral and non-viral miRNA delivery systems provide high transfection to target tissue and avoid nuclease-induced degradation. This study highlights the importance of miRNAs’ regulatory involvement in cancer processes and therapeutic delivery approaches.

##plugins.themes.academic_pro.article.details##

How to Cite
Gültekin, E. N., & Marakli, S. (2024). Importance of miRNAs in Cancer Therapy and Therapeutic Delivery Approaches. International Journal of Pioneering Technology and Engineering, 3(02), 31–36. https://doi.org/10.56158/jpte.2024.71.3.02

References

  1. . Yin, W., Wang, J., Jiang, L., & James Kang, Y. 2021. Cancer and stem cells. Experimental Biology and Medicine, 246(16), 1791-1801.
  2. . Roacho-Pérez, J.A., Garza-Treviño, E.N., Delgado-Gonzalez, P., G-Buentello, Z., Delgado-Gallegos, J.L., Chapa-Gonzalez, C., Sánchez-Domínguez, M., Sanchez-Dominguez, C.N., & Islas, J.F. 2021. Target nanoparticles against pancreatic cancer: fewer side effects in therapy. Life, 11(11), 1187.
  3. . Fane, M. & Weeraratna, A.T. 2020. How the ageing microenvironment influences tumour progression. Nature Reviews Cancer, 20(2), 89-106.
  4. . McTiernan, A., Friedenreich, C.M., Katzmarzyk, P.T., Powell, K.E., Macko, R., Buchner, D., Pescatello, L.S., Bloodgood, B., Tennant, B., & Vaux-Bjerke, A. 2019. Physical activity in cancer prevention and survival: a systematic review. Medicine and Science in Sports and Exercise, 51(6), 1252.
  5. . Javed, B., Ikram, M., Farooq, F., Sultana, T., Mashwani, Z.-u.-R., & Raja, N.I. 2021. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Applied Microbiology and Biotechnology, 105, 2261-2275.
  6. . Shi, Y., Liu, Z., Lin, Q., Luo, Q., Cen, Y., Li, J., Fang, X., & Gong, C. 2021. MiRNAs and cancer: key link in diagnosis and therapy. Genes, 12(8), 1289.
  7. . Hussen, B.M., Hidayat, H.J., Salihi, A., Sabir, D.K., Taheri, M., & Ghafouri-Fard, S. 2021. MicroRNA: A signature for cancer progression. Biomedicine & Pharmacotherapy, 138, 111528.
  8. . Wang, H. 2020. MicroRNAs and apoptosis in colorectal cancer. International Journal of Molecular Sciences, 21(15), 5353.
  9. . Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. 2019. Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836-1852.
  10. . Ma, Z.-X., Liu, Z., Xiong, H.-H., Zhou, Z.-P., Ouyang, L.-S., Xie, F.-K., Tang, Y.-M., Wu, Z.-D., & Feng, Y. 2023. MicroRNAs: protective regulators for neuron growth and development. Neural Regeneration Research, 18(4), 734-745.
  11. . Wang, S., Talukder, A., Cha, M., Li, X., & Hu, H. 2021. Computational annotation of miRNA transcription start sites. Briefings in Bioinformatics. 22(1), 380-392.
  12. . Menegazzi, M. & Gotte, G. 2022. Role of the ribonuclease ONCONASE in miRNA biogenesis and tRNA processing: Focus on cancer and viral infections. International Journal of Molecular Sciences, 23(12), 6556.
  13. . Correia de Sousa, M., Gjorgjieva, M. 2019. Dolicka, D., Sobolewski, C., & Foti, M., Deciphering miRNAs’ action through miRNA editing. International Journal of Molecular Sciences, 20(24), 6249.
  14. . Hill, M. & Tran, N. 2021. miRNA interplay: Mechanisms and consequences in cancer. Disease Models & Mechanisms, 14(4), dmm047662.
  15. . Menon, A., Abd-Aziz, N., Khalid, K., Poh, C.L., & Naidu, R. 2022. miRNA: a promising therapeutic target in cancer. International Journal of Molecular sciences, 23(19), 11502.
  16. . Toden, S., Zumwalt, T.J., & Goel, A. 2021. Non-coding RNAs and potential therapeutic targeting in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1875(1), 188491.
  17. . Yan, Y., Liu, X.-Y., Lu, A., Wang, X.-Y., Jiang, L.-X., & Wang, J.-C. 2022. Non-viral vectors for RNA delivery, Journal of Controlled Release, 342, 241-279.
  18. . Patnaik, S., Gorain, B., Padhi, S., Choudhury, H., Gabr, G.A., Md, S., Mishra, D.K., & Kesharwani, P. 2021. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 161, 100-119.
  19. . Sharma, A., Madhunapantula, S.V., & Robertson, G.P. 2012. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opinion on Drug Metabolism & Toxicology, 8(1), 47-69.
  20. . Zaimy, M., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L., Paschepari, S., Azizi, H., & Torkamandi, S. 2017. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy, 24(6), 233-243.
  21. . Li, X., Li, W., Wang, M., & Liao, Z. 2021. Magnetic nanoparticles for cancer theranostics: Advances and prospects. Journal of Controlled Release, 335, 437-448.
  22. . Bala, V.-M., Lampropoulou, D.I., Grammatikaki, S., Kouloulias, V., Lagopati, N., Aravantinos, G., & Gazouli, M. 2023. Nanoparticle-mediated hyperthermia and cytotoxicity mechanisms in cancer. International Journal of Molecular Sciences, 25(1), 296.
  23. . Chaturvedi, V.K., Singh, A., Singh, V.K., & Singh, M.P. 2019. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Current drug metabolism, 20(6), 416-429.
  24. . Khan, A.Q., Ahmed, E.I., Elareer, N.R., Junejo, K., Steinhoff, M., & Uddin, S. 2019. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells, 8(8), 840,
  25. . Fridrichova, I. & Zmetakova, I. 2019. MicroRNAs contribute to breast cancer invasiveness. Cells, 8(11), 1361.
  26. . Meng, Q., Liang, C., Hua, J., Zhang, B., Liu, J., Zhang, Y., Wei, M., Yu, X., Xu, J., & Shi, S. 2020. A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance: functional validation and clinical significance. Theranostics, 10(9), 3967.
  27. . Xu, X., Yu, Y., Zong, K., Lv, P., & Gu, Y. 2019. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. Journal of Experimental & Clinical Cancer Research, 38(1), 1-14.
  28. . Ma, L., Shao, Z., & Zhao, Y. 2019. MicroRNA-374a promotes pancreatic cancer cell proliferation and epithelial to mesenchymal transition by targeting SRCIN1. Pathology-Research and Practice, 215(6), 152382.
  29. . Seyed Salehi, A., Parsa-Nikoo, N., Roshan-Farzad, F., Shams, R., Fathi, M., Asaszadeh Aghdaei, H., & Behmanesh, A. 2022. MicroRNA-125a-3p,-4530, and-92a as a Potential circulating microrna panel for noninvasive pancreatic cancer diagnosis. Disease Markers, 2022.
  30. . Liang, G., Meng, W., Huang, X., Zhu, W., Yin, C., Wang, C., Fassan, M., Yu, Y., Kudo, M., & Xiao, S. 2020. miR-196b-5p–mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer. Proceedings of the National Academy of Sciences, 117(8), 4347-4357.
  31. . Jamal, J., Molaee, N., & Karami, H. 2019. Up-regulation of MiRNA-125a-5p inhibits cell proliferation and increases EGFR-TKI induced apoptosis in lung cancer cells. Asian Pacific Journal of Cancer Prevention: APJCP, 20(11), 3361.
  32. . Gürsoy, P., Çakar, B., Günenç, D., Nart, D., Çinkooğlu, A., & Katgı, N. 2022. PDL-1 Expression and survival in metastatic non-small cell lung cancer patients who received chemotherapy as first-line treatment. Turkish Thoracic Journal, 23(1), 45.
  33. . Zhang, Q., Pan, J., Xiong, D., Zheng, J., McPherson, K.N., Lee, S., Huang, M., Xu, Y., Chen, S.-h., & Wang, Y. 2023. Aerosolized miR-138-5p and miR-200c targets PD-L1 for lung cancer prevention. Frontiers in Immunology, 14, 1166951.
  34. . Huang, Z., Xing, S., Liu, M., Deng, W., Wang, Y., Huang, Z., Huang, Y., Huang, X., Wu, C., & Guo, X. 2019. MiR-26a-5p enhances cells proliferation, invasion, and apoptosis resistance of fibroblast-like synoviocytes in rheumatoid arthritis by regulating PTEN/PI3K/AKT pathway. Bioscience Reports, 39(7), BSR20182192.
  35. . Zhou, J.-s., Yang, Z.-s., Cheng, S.-y., Yu, J.-h., Huang, C.-J., & Feng, Q. 2020. miRNA-425-5p enhances lung cancer growth via the PTEN/PI3K/AKT signaling axis. BMC Pulmonary Medicine, 20, 1-7.
  36. . Tang, X., Lin, Y., He, J., Luo, X., Liang, J., & Zhu, X. 2022. Downregulated miRNA-491-3p accelerates colorectal cancer growth by increasing uMtCK expression. PeerJ, 10, e14285.
  37. . Deng, X., Li, D., Ke, X., Wang, Q., Yan, S., Xue, Y., Wang, Q., & Zheng, H. 2021. Mir‐488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. Journal of Clinical Laboratory Analysis, 35(1), e23578.
  38. . Kang, X., Li, X., & Li, Y. 2022. Sevoflurane suppresses the proliferation, migration and invasion of colorectal cancer through regulating Circ_0000423/miR-525-5p/SGPP1 network. Cellular and Molecular Bioengineering, 15(2), 219-230.
  39. . Zhang, B., Gao, S., Bao, Z., Pan, C., Tian, Q., & Tang, Q. 2022. MicroRNA-656-3p inhibits colorectal cancer cell migration, invasion, and chemo-resistance by targeting sphingosine-1-phosphate phosphatase 1. Bioengineered, 13(2), 3810-3826.
  40. . Wang, H., Liang, Y., Zhao, L., Deng, J., Li, Y., Zhao, H., Zhang, X., & Zou, F. 2023. miR-653-3p promotes genomic instability of colorectal cancer cells via targeting SIRT1/TWIST1 signaling pathway. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1869(8), 166821.
  41. . Bejarano, L., Bosso, G., Louzame, J., Serrano, R., Gómez‐Casero, E., Martínez‐Torrecuadrada, J., Martínez, S., Blanco‐Aparicio, C., Pastor, J., & Blasco, M.A. 2019. Multiple cancer pathways regulate telomere protection. EMBO Molecular Medicine, 11(7), e10292.
  42. . Dinami, R., Pompili, L., Petti, E., Porru, M., D'Angelo, C., Di Vito, S., Rizzo, A., Campani, V., De Rosa, G., & Bruna, A. 2023. MiR‐182‐3p targets TRF2 and impairs tumor growth of triple‐negative breast cancer. EMBO Molecular Medicine, 15(1), e16033.
  43. . Magrì, A., Reina, S., & De Pinto, V. 2018. VDAC1 as pharmacological target in cancer and neurodegeneration: focus on its role in apoptosis. Frontiers in Chemistry, 6, 108.
  44. . Yang, H., Wang, Z., Hu, S., Chen, L., Li, W., & Yang, Z. 2023. miRNA-874-3p inhibits the migration, invasion and proliferation of breast cancer cells by targeting VDAC1. Aging (Albany Ny), 15(3), 705.
  45. . Shi, R., Wu, P., Liu, M., Chen, B., & Cong, L. 2020. Knockdown of lncRNA PCAT6 enhances radiosensitivity in triple-negative breast cancer cells by regulating miR-185-5p/TPD52 axis. OncoTargets and Therapy, 3025-3037.
  46. . Xu, Y. & Liu, M. 2020. MicroRNA-1323 downregulation promotes migration and invasion of breast cancer cells by targeting tumour protein D52. The Journal of Biochemistry, 168(1), 83-91.
  47. . Corso, G., Figueiredo, J., De Angelis, S.P., Corso, F., Girardi, A., Pereira, J., Seruca, R., Bonanni, B., Carneiro, P., & Pravettoni, G. 2020. E‐cadherin deregulation in breast cancer. Journal of Cellular and Molecular Medicine, 24(11), 5930-5936.
  48. . Niu, X.-Y., Zhang, Z.-Q., & Ma, P.-L. 2019. MiRNA-221-5p promotes breast cancer progression by regulating E-cadherin expression. European Review for Medical & Pharmacological Sciences, 23(16).
  49. . Li, H., Chen, L., Li, J.-j., Zhou, Q., Huang, A., Liu, W.-w., Wang, K., Gao, L., Qi, S.-t., & Lu, Y.-t. 2018. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. Journal of Hematology & Oncology, 11, 1-16.
  50. . Lu, C., Luo, X., Xing, C., Mao, Y., Xu, Y., Gao, W., Wang, W., Zhan, T., Wang, G., & Liu, Z. 2021. Construction of a novel mRNA-miRNA-lncRNA network and identification of potential regulatory axis associated with prognosis in colorectal cancer liver metastases. Aging (Albany NY), 13(11), 14968.
  51. . Yang, Z., Yang, L., Sun, Z., Rong, Y., Bai, C., Dong, Q., & Jian, L. 2023. miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway. Cancer Biology & Therapy, 24(1), 2281459.
  52. . Li, B., Chen, J., Wu, Y., Luo, H., & Ke, Y. 2022. Decrease of circARID1A retards glioblastoma invasion by modulating miR-370-3p/TGFBR2 pathway. International Journal of Biological Sciences, 18(13), 5123.
  53. . Moraes, F.C., Pichon, C., Letourneur, D., & Chaubet, F. 2021. Mirna delivery by nanosystems: state of the art and perspectives, Pharmaceutics, 13(11), 1901.
  54. . Dasgupta, I. & Chatterjee, A. 2021. Recent advances in miRNA delivery systems, Methods and Protocols, 4(1), 10.
  55. . Ban, E., Kwon, T.-H., & Kim, A. 2019. Delivery of therapeutic miRNA using polymer-based formulation. Drug Delivery and Translational Research, 9, 1043-1056.
  56. . Hosseinahli, N., Aghapour, M., Duijf, P.H., & Baradaran, B. 2018. Treating cancer with microRNA replacement therapy: A literature review. Journal of Cellular Physiology, 233(8), 5574-5588.
  57. . Yang, N. 2015. An overview of viral and nonviral delivery systems for microRNA, International Journal of Pharmaceutical Investigation, 5(4), 179.
  58. . Roy, B., Ghose, S., & Biswas, S. 2022. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Seminars in Cell & Developmental Biology: Elsevier.
  59. . Holjencin, C. & Jakymiw, A. 2022. MicroRNAs and their big therapeutic impacts: delivery strategies for cancer intervention. Cells, 11(15), 2332.
  60. . Ang, L., Guo, L., Wang, J., Huang, J., Lou, X., & Zhao, M. 2020. Oncolytic virotherapy armed with an engineered interfering lncRNA exhibits antitumor activity by blocking the epithelial mesenchymal transition in triple-negative breast cancer. Cancer Letters, 479, 42-53.
  61. . Tang, S., Tan, G., Jiang, X., Han, P., Zhai, B., Dong, X., Qiao, H., Jiang, H., & Sun, X. 2016. An artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget, 7(45), 73257.
  62. . Boca, S., Gulei, D., Zimta, A.-A., Onaciu, A., Magdo, L., Tigu, A.B., Ionescu, C., Irimie, A., Buiga, R., & Berindan-Neagoe, I. 2020. Nanoscale delivery systems for microRNAs in cancer therapy. Cellular and Molecular Life Sciences, 77, 1059-1086.
  63. . Uchida, S., Perche, F., Pichon, C., & Cabral, H. 2020. Nanomedicine-based approaches for mRNA delivery. Molecular Pharmaceutics, 17(10), 3654-3684.
  64. . Najahi-Missaoui, W., Arnold, R.D., & Cummings, B.S. 2020. Safe nanoparticles: Are we there yet?. International Journal of Molecular Sciences, 22(1), 385.
  65. . Manimaran, D., Elangovan, N., Mani, P., Subramanian, K., Ali, D., Alarifi, S., Palanisamy, C.P., Zhang, H., Rangasamy, K., & Palanisamy, V. 2022. Isolongifolene-loaded chitosan nanoparticles synthesis and characterization for cancer treatment. Scientific Reports, 12(1), 19250.
  66. . Segal, M. & Slack, F.J. 2020. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opinion on Drug Discovery, 15(9), 987-991.
  67. . Zhang, P., Ouyang, Y., Sohn, Y.S., Fadeev, M., Karmi, O., Nechushtai, R., Stein, I., Pikarsky, E., & Willner, I. 2022. miRNA-guided imaging and photodynamic therapy treatment of cancer cells using Zn (II)-protoporphyrin IX-loaded metal–organic framework nanoparticles. ACS Nano, 16(2), 1791-1801.
  68. . Gu, J., Mu, N., Jia, B., Guo, Q., Pan, L., Zhu, M., Zhang, W., Zhang, K., Li, W., & Li, M. 2022. Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma. Neuro-Oncology, 24(7), 1056-1070.
  69. . Gokita, K., Inoue, J., Ishihara, H., Kojima, K., & Inazawa, J. 2020. Therapeutic potential of LNP-mediated delivery of miR-634 for cancer therapy, Molecular Therapy-Nucleic Acids, 19, 330-338.
  70. . Kobayashi, M., Sawada, K., Miyamoto, M., Shimizu, A., Yamamoto, M., Kinose, Y., Nakamura, K., Kawano, M., Kodama, M., & Hashimoto, K. 2020. Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochemical and Biophysical Research Communications, 527(1), 153-161.
  71. . Pramanik, D., Campbell, N.R., Karikari, C., Chivukula, R., Kent, O.A., Mendell, J.T., & Maitra, A. 2011. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 10(8), 1470-1480.
  72. . Xie, Y., Murray-Stewart, T., Wang, Y., Yu, F., Li, J., Marton, L.J., Casero Jr, R.A., & Oupický, D. 2017. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. Journal of Controlled Release, 246, 110-119.
  73. . Ning, Q., Liu, Y.-F., Ye, P.-J., Gao, P., Li, Z.-P., Tang, S.-Y., He, D.-X., Tang, S.-S., Wei, H., & Yu, C.-Y. 2019. Delivery of liver-specific miRNA-122 using a targeted macromolecular prodrug toward synergistic therapy for hepatocellular carcinoma. ACS Applied Materials & Interfaces, 11(11), 10578-10588.
  74. . Wach, S., Brandl, M., Borchardt, H., Weigelt, K., Lukat, S., Nolte, E., Al-Janabi, O., Hart, M., Grässer, F., & Giedl, J. 2019. Exploring the MIR143-UPAR axis for the inhibition of human prostate cancer cells in vitro and in vivo. Molecular Therapy-Nucleic Acids, 16, 272-283.
  75. . Yung, B.C., Li, J., Zhang, M., Cheng, X., Li, H., Yung, E.M., Kang, C., Cosby, L.E., Liu, Y., & Teng, L. 2016. Lipid nanoparticles composed of quaternary amine–tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of AntimiR-21 for lung cancer. Molecular Pharmaceutics, 13(2), 653-662.
  76. . Kang, E. & Kortylewski, M. 2023. Lipid nanoparticle-mediated delivery of miRNA mimics to myeloid cells. Inflammation and Cancer: Methods and Protocols. Springer, 337-350.
  77. . Chaudhari, R., Nasra, S., Meghani, N., & Kumar, A. 2022. MiR-206 conjugated gold nanoparticle based targeted therapy in breast cancer cells. Scientific Reports, 12(1), 4713.
  78. . Shang, Y., Zhu, Z., Zhang, Y., Ji, F., Zhu, L., Liu, M., Deng, Y., Lv, G., Li, D., & Zhou, Z. 2023. MiR-7-5p/KLF4 signaling inhibits stemness and radioresistance in colorectal cancer. Cell Death Discovery, 9(1), 42.
  79. . Mohammadzade, H., Hashemi‐Moghaddam, H., Beikzadeh, L., Ahmadieh-Yazdi, A., Madanchi, H., & Fallah, P. 2023. Molecular imprinting of miR-559 on a peptide-immobilized poly L-DOPA/silica core–shell and in vitro investigating its effects on HER2-positive breast cancer cells. Drug Delivery and Translational Research, 13(10), 2487-2502.
  80. . Yang, F., Fan, R., Gou, M., Yang, Q., Zhang, T., Dai, G., & Qian, N. 2021. Research on mechanism of miR-214 packaged with lipidosome nanoparticles on prompting the apoptosis of intestinal cancer through regulating p53 pathway. Journal of Biomedical Nanotechnology, 17(12), 2391-2398.
  81. . Garrido-Cano, I., Adam-Artigues, A., Lameirinhas, A., Blandez, J.F., Candela-Noguera, V., Lluch, A., Bermejo, B., Sancenón, F., Cejalvo, J.M., & Martínez-Máñez, R. 2023. Delivery of miR-200c-3p using tumor-targeted mesoporous silica nanoparticles for breast cancer therapy. ACS Applied Materials & Interfaces, 15(32), 38323-38334.
  82. . Zheng, T., Wang, W., Mohammadniaei, M., Ashley, J., Zhang, M., Zhou, N., Shen, J., & Sun, Y. 2022. Anti‐MicroRNA‐21 oligonucleotide loaded spermine‐modified acetalated dextran nanoparticles for B1 receptor‐targeted gene therapy and antiangiogenesis therapy. Advanced Science, 9(5), 2103812.
  83. . Wu, Y., Tang, Y., Xie, S., Zheng, X., Zhang, S., Mao, J., Wang, B., Hou, Y., Hu, L., & Chai, K. 2020. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics, 10(3), 1151.
  84. . Li, L., He, D., Guo, Q., Zhang, Z., Ru, D., Wang, L., Gong, K., Liu, F., Duan, Y., & Li, H. 2022. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. Journal of Nanobiotechnology, 20(1), 50.
  85. . Guo, W., Wu, Z., Chen, J., Guo, S., You, W., Wang, S., Ma, J., Wang, H., Wang, X., & Wang, H. 2022. Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. Journal for Immunotherapy of Cancer, 10(6).
  86. . Dehghankelishadi, P., Maritz, M.F., Badiee, P., & Thierry, B. 2022. High density lipoprotein nanoparticle as delivery system for radio-sensitising miRNA: an investigation in 2D/3D head and neck cancer models. International Journal of Pharmaceutics, 617, 121585.
  87. . Sharma, S., Pukale, S., Sahel, D.K., Singh, P., Mittal, A., & Chitkara, D. 2021. Folate targeted hybrid lipo-polymeric nanoplexes containing docetaxel and miRNA-34a for breast cancer treatment. Materials Science and Engineering: C, 128: 112305.
  88. . Chen, D., Lei, C., Liu, W., Shao, M., Sun, M., Guo, J., Cao, J., Nie, J.-J., Luo, P., & Luo, Y. 2023. Reduction-responsive nucleic acid nanocarrier-mediated miR-22 inhibition of PI3K/AKT pathway for the treatment of patient-derived tumor xenograft osteosarcoma. Bioactive Materials, 28, 376-385.
  89. . Dilsiz, N. 2020. Role of exosomes and exosomal microRNAs in cancer. Future Science OA, 6(4), FSO465.
  90. . Kabekkodu, S.P., Shukla, V., Varghese, V.K., D'Souza, J., Chakrabarty, S., & Satyamoorthy, K. 2018. Clustered miRNAs and their role in biological functions and diseases. Biological Reviews, 93(4), 1955-1986.
  91. . Stark, V.A., Facey, C.O., Viswanathan, V., & Boman, B.M. 2021. The role of miRNAs, miRNA clusters, and isomiRs in development of cancer stem cell populations in colorectal cancer. International Journal of Molecular Sciences, 22(3), 1424.
  92. . Al-Awsi, G.R.L., Jasim, S.A., Fakri Mustafa, Y., Alhachami, F.R., Ziyadullaev, S., Kandeel, M., Abulkassim, R., Sivaraman, R., M Hameed, N., & Mireya Romero Parra, R. 2023. The role of miRNA-128 in the development and progression of gastrointestinal and urogenital cancer. Future Oncology, 18(38), 4209-4231.
  93. . Dorraki, N., Ghale-Noie, Z.N., Ahmadi, N.S., Keyvani, V., Bahadori, R.A., Nejad, A.S., Aschner, M., Pourghadamyari, H., Mollazadeh, S., & Mirzaei, H. 2021. miRNA-148b and its role in various cancers. Epigenomics, 13(24), 1939-1960.
  94. . Sun, B., Zhao, X., Ming, J., Liu, X., Liu, D., & Jiang, C. 2019. Stepwise detection and evaluation reveal miR-10b and miR-222 as a remarkable prognostic pair for glioblastoma. Oncogene, 38(33), 6142-6157.
  95. . Zou, D., Zhou, Q., Wang, D., Guan, L., Yuan, L., & Li, S. 2016. The downregulation of microRNA-10b and its role in cervical cancer. Oncology research, 24(2), 99.
  96. . Sharma, P., Dando, I., Strippoli, R., Kumar, S., Somoza, A., Cordani, M., & Tafani, M. 2020. Nanomaterials for autophagy-related miRNA-34a delivery in cancer treatment. Frontiers in Pharmacology, 11, 538090.
  97. . Farina, N.H., Zingiryan, A., Vrolijk, M.A., Perrapato, S.D., Ades, S., Stein, G.S., Lian, J.B., & Landry, C.C. 2018. Nanoparticle‐based targeted cancer strategies for non‐invasive prostate cancer intervention. Journal of cellular Physiology, 233(9), 6408-6417.
  98. . Sayyed, A.A., Gondaliya, P., Bhat, P., Mali, M., Arya, N., Khairnar, A., & Kalia, K. 2022. Role of miRNAs in cancer diagnostics and therapy: a recent update. Current Pharmaceutical Design, 28(6), 471-487.
  99. . Bertucci, A., Prasetyanto, E.A., Septiadi, D., Manicardi, A., Brognara, E., Gambari, R., Corradini, R., & De Cola, L. 2015. Combined delivery of temozolomide and anti‐miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small, 11(42), 5687-5695.