Enhancing Mobile Acute Lymphoblastic Cancer Detection: Transfer Learning from YOLOv9 to TensorFlow for Real-Time Applications


Osama Burak Elhalid
Ali Hakan Işık


The detection of acute lymphoblastic cancer (ALL) is critical for timely diagnosis and treatment. In this study, we propose a novel approach to enhance ALL detection using transfer learning techniques from YOLOv9 to TensorFlow, facilitating real-time application on mobile devices. Leveraging the robustness of YOLOv9 and the versatility of TensorFlow, we fine-tune the pre-trained model to optimize performance for ALL detection. The adapted model is then integrated into a mobile application, enabling users to perform real-time ALL detection using their smartphones. Our results demonstrate the efficacy of the proposed system in accurately identifying ALL cells, with a detection rate of 98% in one scenario and 100% in another. This research represents a significant step forward in leveraging advanced computer vision technologies for mobile healthcare applications, ultimately improving patient outcomes and healthcare accessibility.


How to Cite
Elhalid, O. B., & Işık, A. H. (2024). Enhancing Mobile Acute Lymphoblastic Cancer Detection: Transfer Learning from YOLOv9 to TensorFlow for Real-Time Applications. International Journal of Pioneering Technology and Engineering, 3(01), 21–26. https://doi.org/10.56158/jpte.2024.70.3.01


  1. Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., & Mengko, T. R. 2019. Brain Tumor Classification Using Convolutional Neural Network. World Congress on Medical Physics and Biomedical Engineering 2018, pp. 183–189.
  2. Rosales-Pérez, A. 2022. A review of machine learning techniques for acute leukemia classification. Biosignal Processing and Classification Using Computational Learning and Intelligence, pp. 429-446.
  3. [Jha, C. K., Choubey, A., Kolekar, M. H., & Chakraborty, C. 2023. Automated Acute Lymphoblastic Leukemia Detection Using Blood Smear Image Analysis. In Machine Learning and Deep Learning Techniques for Medical Image Recognition, pp. 64-75.
  4. Khandekar, R., Shastry, P., Jaishankar, S., Faust, O., & Sampathila, N. 2021. Automated blast cell detection for Acute Lymphoblastic Leukemia diagnosis. Biomedical Signal Processing and Control, 68, 102690.
  5. Horvat, M., & Gledec, G. 2022. A Comparative Study of YOLOv5 Models Performance for Image Localization and Classification. Central European Conference on Information and Intelligent Systems, pp. 349–356.
  6. Fan, J., Cui, L., & Fei, S. 2023. Waste Detection System Based on Data Augmentation and YOLO_EC. Sensors, 23(7), 3646.
  7. McFaline-Figueroa, J. R., & Lee, E. Q. 2018. Brain Tumors. American Journal of Medicine, 131(8), pp. 874–882.
  8. Pan, S., Liu, J., & Chen, D. 2023. Research on License Plate Detection and Recognition System based on YOLOv7 and LPRNet. Academic Journal of Science and Technology, 4(2), pp. 62–68.
  9. Khan, M. U., Dil, M., Misbah, M., & Orakazi, F. A.2022. Deep Learning Empowered Fast and Accurate Multiclass UAV Detection in Challenging Weather Conditions. Preprints.org.
  10. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2016. You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788.
  11. Redmon, J., & Farhadi, A. 2017. YOLO9000: Better, Faster, Stronger. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525.
  12. Redmon, J., & Farhadi, A. 2018. YOLOv3. Technical Report, pp. 1–6. Available at: https://pjreddie.com/media/files/papers/YOLOv3.pdf.
  13. Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv Preprint. Available at: https://arxiv.org/abs/2004.10934.
  14. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon, Y., Michael, K., ... & Jain, M. 2022. Ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo.
  15. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., ... & Wei, X. 2022. YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976.
  16. Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. 2023. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475.
  17. Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27(8), pp. 861-874.
  18. Powers, D. M. 2020. Evaluation: from precision, recall, and F-measure to ROC, informedness, markedness, and correlation. arXiv Preprint arXiv:2010.16061.
  19. Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. 2010. The Pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88, pp. 303-338.
  20. Li, Y., Fan, Q., Huang, H., Han, Z., & Gu, Q. 2023. A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition. Drones, 7(5), 304.
  21. Reis, D., Kupec, J., Hong, J., & Daoudi, A. 2023. Real-time flying object detection with YOLOv8. arXiv preprint arXiv:2305.09972.
  22. Lou, H., Duan, X., Guo, J., Liu, H., Gu, J., Bi, L., & Chen, H. 2023. DC-YOLOv8: small-size object detection algorithm based on camera sensor. Electronics, 12(10), 2323.
  23. Khagi, B., & Kwon, G.-R. 2021. 3D CNN based Alzheimer’s Diseases Classification Using Segmented Grey Matter Extracted from Whole-Brain MRI. JOIV International Journal of Informatics Vision, 5(2), p. 200.
  24. Ali, F., Khan, S., Abbas, A. W., Shah, B., Hussain, T., Song, D., ... & Singh, J. 2022, A two-tier framework based on googlenet and yolov3 models for tumor detection in mri. Computers, Materials and Continua, 72, 73.
  25. Montalbo, F. J. P. 2020. A Computer-Aided Diagnosis of Brain Tumors Using a Fine-Tuned YOLO-based Model with Transfer Learning. KSII Transactions on Internet and Information Systems, 14(12).
  26. Chegraoui, H., Philippe, C., Dangouloff-Ros, V., Grigis, A., Calmon, R., Boddaert, N., ... & Frouin, V. 2021. Object detection improves tumour segmentation in MR images of rare brain tumours. Cancers, 13(23), 6113.
  27. Jocher, G., Chaurasia, A., & Qiu, J. 2023. YOLO by Ultralytics. Available at: https://github.com/ultralytics/ultralytics.
  28. [Cheng, J. 2017. Brain Tumor dataset. Figshare. Available at: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427.
  29. Dwyer, B., Nelson, J., & Solawetz, J. 2022, Roboflow (version 1.0) [software]. Available at: https://roboflow.com/research.
  30. Denny, J., Rubeena, M. M., & Denny, J. K. 2020. Cloud-based acute lymphoblastic leukemia detection using deep convolutional neural networks. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 530-536. IEEE.
  31. Kasani, H., Park, S.-W., & Jang, J.-W. 2020. An aggregated-based deep learning method for leukemic B-lymphoblast classification. Diagnostics, 10(12), 1064.
  32. Genovese, A., Hosseini, M. S., Piuri, V., Plataniotis, K. N., & Scotti, F. 2021. Histopathological transfer learning for acute lymphoblastic leukemia detection. 2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 1-6. IEEE.
  33. Safuan, S. N. M., Tomari, M. R. M., Zakaria, W. N. W., Othman, N., & Suriani, N. S. 2020., Computer aided system (CAS) of lymphoblast classification for acute lymphoblastic leukemia (ALL) detection using various pre-trained models. In 2020 IEEE Student Conference on Research and Development (SCOReD) (pp. 411-415).
  34. Jiang, Z., Dong, Z., Wang, L., & Jiang, W. 2021. Method for diagnosis of acute lymphoblastic leukemia based on ViT‐CNN ensemble model. Computational Intelligence and Neuroscience, (1), 7529893.
  35. Aftab, M. O., Awan, M. J., Khalid, S., Javed, R., & Shabir, H. 2021. Executing spark BigDL for leukemia detection from microscopic images using transfer learning. In 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA) (pp. 216-220). IEEE.
  36. Terven, J., & Cordova-Esparza, D. 2023. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond. arXiv preprint arXiv:2304.00501.
  37. Lou, H., Guo, J., Chen, H., Liu, H., Gu, J., Bi, L., & Duan, X. 2023. CS-YOLO: A new detection algorithm for alien intrusion on highway, Scientific Reports,
  38. Elhalid, O. B., Isık, A. H., & Özmen, Ö. 2024. Enhancing Giardia intestinalis Image Detection through YOLOv8-BasedDeep Learning Techniques. International Journal of Engineering and Innovative Research. 6:2, 64-85
  39. Elhalid, O. B. (2023). Artificial Intelligence and Machine Learning Technologies: Innovative solutions to combat Covid-19 and maintain public health. Available at SSRN 4603882.7
  40. Passa, R. S., Nurmaini, S., & Rini, D. P. 2023. YOLOv8 Based on Data Augmentation for MRI Brain Tumor Detection. Scientific Journal of Informatics, 10(3).