The evolutionary relationships of microRNAs in the regulation of glucose and lipid metabolism in human and animals


Osman Sabri Kilic
Sevgi Marakli


microRNA (miRNA) is a non-coding RNA type, regulating gene expressions at a post-transcriptional level. Changes in miRNA expressions can cause problems such as lipid metabolism disorder, cardiovascular disease, growth retardation, low birth weight and insulin resistance, etc., in human and animals. In this study, we investigated the evolutionary relationships of 14 miRNAs including hsa-miR27a-5p, hsa-miR149-3p, hsa-miR374c-5p, mmu-miR-678, mmu-miR-698-5p, hsa-miR-199a-3p, hsa-miR122-3p, hsa-miR342-3p, mmu-miR201-5p, hsa-miR429, hsa-miR370-3p, hsa-miR130a-5p, hsa-miR330-3p and hsa-miR770-5p related to different metabolic pathways including cardiovascular diseases and lipid metabolism. For this purpose, miRNAs were retrieved from miRBase database. After, Clustal Omega analyses were performed for alignment, and a phylogenetic tree was constructed via MEGA 11. Phylogenetic tree indicated that 14 miRNA sequences were clustered into four groups. One group consisted of mmu-miR-678, and the other 13 sequences were separated into three groups, revealing a close relationship among miRNAs. Findings from different studies provide a new perspective for potential miRNA-based biomarkers to detect lipid metabolism disorders, cardiovascular diseases as well as related disorders.


How to Cite
Kilic, O. S., & Marakli, S. (2023). The evolutionary relationships of microRNAs in the regulation of glucose and lipid metabolism in human and animals. International Journal of Pioneering Technology and Engineering, 2(01), 113–119.


  1. Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
  2. Ganju, A., Khan, S., Hafeez, B. B., Behrman, S. W., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. 2017, miRNA nanotherapeutics for cancer. Drug discovery today, 22(2), 424-432.
  3. Diener, C., Keller, A., & Meese, E., 2022, Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics.
  4. Karaismailoglu, R. and Marakli, S., 2022 miRNAs as biomarkers in human diseases. International Journal of Science Letters, 4(1), 190-201.
  5. Aravindan, N., Subramanian, K., Somasundaram, D. B., Herman, T. S., & Aravindan, S., 2019, MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. Cancer Drug Resistance, 2(4), 1086.
  6. Preethi, K. A., & Sekar, D., 2021, Dietary microRNAs: Current status and perspective in food science. Journal of Food Biochemistry, 45(7), e13827.
  7. Ruskovska, T., Budić-Leto, I., Corral-Jara, K. F., Ajdžanović, V., Arola-Arnal, A., Bravo, F. I., ... & Milenkovic, D.,2022, Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans-Evidence from untargeted mRNA and miRNA studies. Ageing Research Reviews, 101649.
  8. Luceri, C., Bigagli, E., Pitozzi, V., & Giovannelli, L.,2017, A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. European journal of nutrition, 56, 865-877.
  9. Peña-Romero, A. C., Navas-Carrillo, D., Marín, F., & Orenes-Piñero, E., 2018, The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases. Critical reviews in food science and nutrition, 58(17), 3030-3041.
  10. Yalçın, B.,2022, Kardiyovasküler Hastalıklar ve Nutrigenomik Cardiovascular Diseases and Nutrigenomics. Journal of Health Sciences, 2(1), 386-394.
  11. Gülşah, K. O. Ç.,2018, The Impact of Nutrigenomics From Genotype to Phenotype. Journal of Medical Clinics, 1(1), 79-92.
  12. Bordoni, L., Petracci, I., Zhao, F., Min, W., Pierella, E., Assmann, T. S., ... & Gabbianelli, R.,2021, Nutrigenomics of dietary lipids. Antioxidants, 10(7), 994.
  13. Lin, R. J., Lin, Y. C., & Yu, A. L.,2010, miR‐149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Molecular carcinogenesis, 49(8), 719-727.
  14. Pan, S., Zheng, Y., Zhao, R., & Yang, X.,2013, MicroRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs. British Journal of Nutrition, 109(10), 1731-1738.
  15. Goyal, R., Goyal, D., Leitzke, A., Gheorghe, C. P., & Longo, L. D.,2010, Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reproductive Sciences, 17(3), 227-238.
  16. Banik, S. K., Baishya, S., Das Talukdar, A., & Choudhury, M. D.,2022, Network analysis of atherosclerotic genes elucidates druggable targets. BMC Medical Genomics, 15(1), 42.
  17. Alejandro, E. U., Gregg, B., Wallen, T., Kumusoglu, D., Meister, D., Chen, A., ... & Bernal-Mizrachi, E.,2014, Maternal diet–induced microRNAs and mTOR underlie β cell dysfunction in offspring. The Journal of clinical investigation, 124(10), 4395-4410.
  18. Gatfield, D., Le Martelot, G., Vejnar, C. E., Gerlach, D., Schaad, O., Fleury-Olela, F., ... & Schibler, U.,2009, Integration of microRNA miR-122 in hepatic circadian gene expression. Genes & development, 23(11), 1313-1326.
  19. Wei, S., Zhang, M., Yu, Y., Xue, H., Lan, X., Liu, S., ... & Chen, L.,2016, HNF-4α regulated miR-122 contributes to development of gluconeogenesis and lipid metabolism disorders in Type 2 diabetic mice and in palmitate-treated HepG2 cells. European Journal of Pharmacology, 791, 254-263.
  20. Zhang, B., Liu, S., Sun, Y., & Xu, D.,2023, Endosulfan induced kidney cell injury by modulating ACE2 through up-regulating miR-429 in HK-2 cells. Toxicology, 484, 153392.
  21. Benatti, R. O., Melo, A. M., Borges, F. O., Ignacio-Souza, L. M., Simino, L. A. P., Milanski, M., ... & Torsoni, A. S.,2014, Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122,miR-122,and microRNA-370,miR-370,expression in offspring. British journal of nutrition, 111(12), 2112-2122.
  22. Sebastiani, G., Guarino, E., Grieco, G. E., Formichi, C., Delli Poggi, C., Ceccarelli, E., & Dotta, F.,2017, Circulating microRNA,miRNA,expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p. Frontiers in endocrinology, 8, 345.
  23. Tamura, K., Stecher, G., & Kumar, S.,2021, MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022-3027.
  24. Saitou N, Nei M,1987,The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
  25. Nei M, Kumar S,2000,Molecular evolution and phylogenetics. Oxford University Press, New York 39.
  26. Felsenstein J,1985,Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
  27. Elangovan, A., Venkatesan, D., Selvaraj, P., Pasha, M. Y., Babu, H. W. S., Iyer, M., ... & Vellingiri, B.,2023, miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. Journal of Cellular Physiology, 238(2), 329-354.
  28. Wronska, A.,2023, The Role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease: Recent Developments. Journal of Pharmacology and Experimental Therapeutics, 384(1), 123-132.
  29. Doghish, A. S., Elballal, M. S., Elazazy, O., Elesawy, A. E., Elrebehy, M. A., Shahin, R. K., ... & Sallam, A. A. M.,2023, The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathology-Research and Practice, 154375.
  30. Casas-Agustench, P., Iglesias-Gutierrez, E., & Davalos, A.,2015, Mother’s nutritional miRNA legacy: Nutrition during pregnancy and its possible implications to develop cardiometabolic disease in later life. Pharmacological research, 100, 322-334.
  31. Zhu, W., Gui, W., Lin, X., Yin, X., Liang, L., & Li, H.,2021, Maternal undernutrition modulates hepatic MicroRNAs expression in the early life of offspring. Experimental Cell Research, 400(2), 112450.
  32. Yeligar, S., Tsukamoto, H., & Kalra, V. K.,2009, Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1α and microRNA-199. The Journal of Immunology, 183(8), 5232-5243.
  33. Paula, T. G. D., Zanella, B. T. T., Fantinatti, B. E. D. A., Moraes, L. N. D., Duran, B. O. D. S., Oliveira, C. B. D., ... & Dal-Pai-Silva, M.,2017, Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu,Piaractus mesopotamicus, PLoS One, 12(5), e0177679
  34. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., ... & Monia, B. P.,2006, miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell metabolism, 3(2), 87-98.
  35. Iliopoulos, D., Drosatos, K., Hiyama, Y., Goldberg, I. J., & Zannis, V. I.,2010, MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism [S]. Journal of lipid research, 51(6), 1513-1523.
  36. Gao, W., He, H. W., Wang, Z. M., Zhao, H., Lian, X. Q., Wang, Y. S., ... & Wang, L. S.,2012, Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids in health and disease, 11(1), 1-8.
  37. Baselga-Escudero, L., Arola-Arnal, A., Pascual-Serrano, A., Ribas-Latre, A., Casanova, E., Salvadó, M. J., ... & Blade, C.,2013, Chronic administration of proanthocyanidins or docosahexaenoic acid reversess the increase of miR-33a and miR-122 in dyslipidemic obese rats. PLoS One, 8(7), e69817.
  38. de Paula Simino, L. A., de Fante, T., Figueiredo Fontana, M., Oliveira Borges, F., Torsoni, M. A., Milanski, M., ... & Souza Torsoni, A.,2017, Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet. Nutrition & metabolism, 14(1), 1-15.
  39. López, P., Castro, A., Flórez, M., Miranda, K., Aranda, P., Sánchez-González, C., ... & Arredondo, M.,2018, miR-155 and miR-122 expression of spermatozoa in obese subjects. Frontiers in Genetics, 9, 175.
  40. Hess, A. L., Larsen, L. H., Udesen, P. B., Sanz, Y., Larsen, T. M., & Dalgaard, L. T.,2020, Levels of circulating miR‐122 are associated with weight loss and metabolic syndrome. Obesity, 28(3), 493-501.
  41. Shin, P. K., Kim, M. S., Park, S. J., Kwon, D. Y., Kim, M. J., Yang, H. J., ... & Choi, S. W.,2020, A traditional korean diet alters the expression of circulating micrornas linked to diabetes mellitus in a pilot trial. Nutrients, 12(9), 2558.
  42. Kalaki-Jouybari, F., Shanaki, M., Delfan, M., Gorgani-Firouzjae, S., & Khakdan, S.,2020, High-intensity interval training,HIIT,alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Archives of physiology and biochemistry, 126(3), 242-249.
  43. Qin, N., Chen, Y., Jin, M. N., Zhang, C., Qiao, W., Yue, X. L., ... & Niu, W. Y.,2016, Anti-obesity and anti-diabetic effects of flavonoid derivative,Fla-CN,via microRNA in high fat diet induced obesity mice. European Journal of Pharmaceutical Sciences, 82, 52-63.
  44. Chen, S. Z., Xu, X., Ning, L. F., Jiang, W. Y., Xing, C., Tang, Q. Q., & Huang, H. Y.,2015, mi R‐27 impairs the adipogenic lineage commitment via targeting lysyl oxidase. Obesity, 23(12), 2445-2453.
  45. Zou, B., Ge, Z., Zhu, W., Xu, Z., & Li, C.,2015, Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis. European journal of nutrition, 54(8), 1333-1343.
  46. Sardu, C., Trotta, M. C., Pieretti, G., Gatta, G., Ferraro, G., Nicoletti, G. F., ... & Marfella, R.,2021, MicroRNAs modulation and clinical outcomes at 1 year of follow-up in obese patients with pre-diabetes treated with metformin vs. placebo. Acta Diabetologica, 58(10), 1381-1393.
  47. Xiao, J., Lv, D., Zhao, Y., Chen, X., Song, M., Liu, J., ... & Yang, C.,2016, miR‐149 controls non‐alcoholic fatty liver by targeting FGF‐21. Journal of cellular and molecular medicine, 20(8), 1603-1608.
  48. Yuan, J., Chen, M., Xu, Q., Liang, J., Chen, R., Xiao, Y., ... & Chen, L.,2017, Effect of the diabetic environment on the expression of MiRNAs in endothelial cells: mir-149-5p restoration ameliorates the high glucose-induced expression of TNF-α and ER stress markers. Cellular Physiology and Biochemistry, 43(1), 120-135.
  49. Shibayama, Y., Nagano, M., Fujii, A., Hashiguchi, K., Morita, S., Kubo, Y., & Nakagawa, T.,2020, Effect of concentrated Kurozu, a traditional Japanese vinegar, on expression of hepatic miR-34a,-149-3p, and-181a-5p in high-fat diet-fed mice. Functional Foods in Health and Disease, 10(1), 1-17.
  50. Khan, R., Raza, S. H. A., Junjvlieke, Z., Wang, X., Wang, H., Cheng, G., ... & Zan, L.,2020, Bta‐miR‐149‐5p inhibits proliferation and differentiation of bovine adipocytes through targeting CRTCs at both transcriptional and posttranscriptional levels. Journal of Cellular Physiology, 235(7-8), 5796-5810.
  51. Ahmadpour, F., Nourbakhsh, M., Razzaghy-Azar, M., Khaghani, S., Alipoor, B., Abdolvahabi, Z., & Zangoei, M.,2018, The association of plasma levels of miR-34a AND miR-149 with obesity and insulin resistance in obese children and adolescents. Acta Endocrinologica,Bucharest), 14(2), 149.
  52. Chen, Z., Liu, Y., Yang, L., Liu, P., Zhang, Y., & Wang, X.,2020, MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway. Immunology Letters, 222, 40-48.
  53. Paramasivam, P., Meugnier, E., Gokulakrishnan, K., Ranjini, H., Staimez, L. R., Weber, M. B., ... & Balasubramanyam, M.,2022, Blood-derived miRNA levels are not correlated with metabolic or anthropometric parameters in obese pre-diabetic subjects but with systemic inflammation. Plos one, 17(2), e0263479.
  54. Kim, S. H., MacIntyre, D. A., Binkhamis, R., Cook, J., Sykes, L., Bennett, P. R., & Terzidou, V.,2020, Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births. EBioMedicine, 62, 103145.
  55. Tan, I. L., Coutinho de Almeida, R., Modderman, R., Stachurska, A., Dekens, J., Barisani, D., ... & Withoff, S.,2021, Circulating miRNAs as potential biomarkers for celiac disease development. Frontiers in Immunology, 12, 734763.
  56. Kim, C., Lee, H., Cho, Y. M., Kwon, O. J., Kim, W., & Lee, E. K.,2013, TNFα-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS letters, 587(23), 3853-3858.
  57. Pan, S., Yang, X., Jia, Y., Li, Y., Chen, R., Wang, M., ... & Zhao, R.,2015, Intravenous injection of microvesicle-delivery miR-130b alleviates high-fat diet-induced obesity in C57BL/6 mice through translational repression of PPAR-γ. Journal of biomedical science, 22(1), 1-12.
  58. Zhang, M., Zhou, Z., Wang, J., & Li, S.,2016, MiR-130b promotes obesity associated adipose tissue inflammation and insulin resistance in diabetes mice through alleviating M2 macrophage polarization via repression of PPAR-γ. Immunology Letters, 180, 1-8.
  59. Al-Rawaf, H. A.,2019, Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clinical Nutrition, 38(5), 2231-2238.
  60. Yang, W. M., Min, K. H., & Lee, W.,2016, MicroRNA expression analysis in the liver of high fat diet-induced obese mice. Data in brief, 9, 1155-1159.
  61. Sun, J., Huang, Q., Li, S., Meng, F., Li, X., & Gong, X.,2018, miR-330-5p/Tim-3 axis regulates macrophage M2 polarization and insulin resistance in diabetes mice. Molecular Immunology, 95, 107-113.
  62. Ortega, F. J., Cardona-Alvarado, M. I., Mercader, J. M., Moreno-Navarrete, J. M., Moreno, M., Sabater, M., ... & Fernández-Real, J. M.,2015, Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. The Journal of nutritional biochemistry, 26(10), 1095-1101.
  63. Pfeiffer, S., Sánchez-Lechuga, B., Donovan, P., Halang, L., Prehn, J. H., Campos-Caro, A., ... & López-Tinoco, C.,2020, Circulating miR-330-3p in late pregnancy is associated with pregnancy outcomes among lean women with GDM. Scientific reports, 10(1), 1-11.
  64. Lee, E. K., Jeong, H. O., Bang, E. J., Kim, C. H., Mun, J. Y., Noh, S., ... & Chung, H. Y.,2018, The involvement of serum exosomal miR-500-3p and miR-770-3p in aging: modulation by calorie restriction. Oncotarget, 9(5), 5578.
  65. Zhang, Y. L., & Chen, X. Q.,2020, Dysregulation of microRNA-770-5p influences pancreatic-β-cell function by targeting TP53 regulated inhibitor of apoptosis 1 in gestational diabetes mellitus. Eur Rev Med Pharmacol Sci, 24(2), 793-801.
  66. Wang, M., Wei, J., Ji, T., & Zang, K.,2021, miRNA-770-5p expression is upregulated in patients with type 2 diabetes and miRNA-770-5p knockdown protects pancreatic β-cell function via targeting BAG5 expression. Experimental and Therapeutic Medicine, 22(1), 1-9.
  67. Chartoumpekis, D. V., Zaravinos, A., Ziros, P. G., Iskrenova, R. P., Psyrogiannis, A. I., Kyriazopoulou, V. E., & Habeos, I. G.,2012, Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PloS one, 7(4), e34872.
  68. Zhang, D., Yamaguchi, S., Zhang, X., Yang, B., Kurooka, N., Sugawara, R., ... & Wada, J.,2021, Upregulation of Mir342 in diet-induced obesity mouse and the hypothalamic appetite control. Frontiers in endocrinology, 12, 727915.
  69. Matboli, M., Eissa, S., Ibrahim, D., Hegazy, M. G., Imam, S. S., & Habib, E. K.,2017, Caffeic acid attenuates diabetic kidney disease via modulation of autophagy in a high-fat diet/streptozotocin-induced diabetic rat. Scientific Reports, 7(1), 1-12.
  70. Galan, C., Krykbaeva, M., & Rando, O. J.,2020, Early life lessons: The lasting effects of germline epigenetic information on organismal development. Molecular Metabolism, 38, 100924.
  71. Sene, L. D. B., Mesquita, F. F., de Moraes, L. N., Santos, D. C., Carvalho, R., Gontijo, J. A. R., & Boer, P. A.,2013, Involvement of renal corpuscle microRNA expression on epithelial-to-mesenchymal transition in maternal low protein diet in adult programmed rats. PLoS One, 8(8), e71310.
  72. Peng, Y., Chen, F. F., Ge, J., Zhu, J. Y., Shi, X. E., Li, X., ... & Yang, G. S.,2016, miR-429 inhibits differentiation and promotes proliferation in porcine preadipocytes. International journal of molecular sciences, 17(12), 2047.
  73. Chao, X., Guo, L., Wang, Q., Huang, W., Liu, M., Luan, K., ... & Luo, Q.,2020, miR-429-3p/LPIN1 axis promotes chicken abdominal fat deposition via PPARγ pathway. Frontiers in Cell and Developmental Biology, 8, 595637.
  74. Nguyen, M. T., Min, K. H., & Lee, W.,2021, Palmitic acid-induced miR-429-3p impairs myoblast differentiation by downregulating CFL2. International Journal of Molecular Sciences, 22(20), 10972.
  75. Zhang, X. R., Fu, X. J., Zhu, D. S., Zhang, C. Z., Hou, S., Li, M., & Yang, X. H.,2016, Salidroside-regulated lipid metabolism with down-regulation of miR-370 in type 2 diabetic mice. European journal of pharmacology, 779, 46-52.
  76. Chu, Y., Yao, Y., & Li, X.,2021, MiR-370 enhances cell cycle and represses lipid accumulation in porcine adipocytes. Animal Biotechnology, 32(3), 334-342.
  77. Panzarin, C., Simino, L. A. D. P., Mancini, M. C. S., Ignácio-Souza, L. M., Milanski, M., Torsoni, M. A., & Torsoni, A. S.,2022, Hepatic microRNA modulation might be an early event to non-alcoholic fatty liver disease development driven by high-fat diet in male mice. Molecular Biology Reports, 49(4), 2655-2666.