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1. Introduction 

Leukemia, characterized by the rapid proliferation of 
abnormal white blood cells, presents a significant challenge in 
healthcare due to its complex nature. The uncontrolled growth 
of these abnormal cells originates in the bone marrow and often 
spreads to the blood and other organs. In recent years, leukemia 
has emerged as a prominent concern, particularly among 
children and adolescents. 

As of 2016, leukemia became the primary contributor to 
cancer-related fatalities among children aged 0-14 in the United 
States, overtaking brain tumors. Additionally, it ranks as one of 
the most prevalent cancers among adolescents aged 15-39 [1]. 

The diagnosis and management of leukemia require 
specialized medical services equipped with a comprehensive 
understanding of the disease. Traditionally, diagnosis has relied 
on various methods, including blood tests, bone marrow 
biopsies, and genetic analyses. These diagnostic techniques, 
while effective, often require considerable time and expertise to 
yield accurate results. 

Recent advancements in artificial intelligence (AI) and 
machine learning (ML) have introduced new opportunities for 
enhancing leukemia detection. Deep learning-based 
approaches, particularly Convolutional Neural Networks 
(CNNs), have shown significant promise in this domain. For 
example, Li et al. (2018) demonstrated that CNNs could 
effectively classify leukemia cells with high accuracy [2]. 
Similarly, Zhang et al. (2019) explored the use of CNNs for the 
automatic detection of acute lym phoblastic leukemia, 
achieving notable results [3]. 

In recent studies, CNN architectures such as YOLO (You Only 
Look Once) have been explored for their potential in detecting 
leukemia cells from microscopic images of blood or bone marrow 
samples. Researchers have investigated different versions of 
YOLO, including YOLOv3, YOLOv4, and YOLOv5, to optimize 
detection accuracy and efficiency. For instance, Wang et al. 
(2020) found that YOLOv4 outperformed previous versions in 
terms of both speed and accuracy for leukemia cell detection [4]. 

Despite these advancements, there remains a need for further 
research and development to enhance leukemia detection 
methodologies. Current approaches still face challenges in 
achieving the desired levels of accuracy and efficiency necessary 
for clinical application. This study aims to address these gaps by 
utilizing the YOLOv9 architecture within the CNN framework for 
more accurate and efficient leukemia detection. 

By leveraging the advanced capabilities of YOLOv9, we seek 
to improve the detection process, making it faster and more 
reliable. This contribution is expected to facilitate earlier 
diagnosis and better treatment outcomes for leukemia patients, 
particularly among vulnerable pediatric and adolescent 
populations. 
2. Methodology 

This research endeavors to detect leukemia utilizing the 
YOLOv9 architecture, integrating various data augmentation 
techniques. The acquired results will undergo thorough analysis 
and evaluation. The research framework delineating the 
sequential stages toward attaining the study's ultimate objectives 
is illustrated in Figure 1.
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Fig 1. Research Framework Block Diagram 

Figure 1 shows the different stages of data processing, likely 
in the context of medical research using blood cells. 

The first stage is data collection, which involves gathering 
blood samples. The second stage is data augmentation, which 
may involve manipulating the data to create more samples or 
improve the quality of the data. The third stage is data 
preprocessing, which involves cleaning and formatting the data 
so that it can be used by an ML model. 

The fourth stage is model testing, which involves evaluating 
the performance of an ML model on a dataset. The fifth stage is 
transfer learning (TL), which is a technique that involves using 
a pre-trained model on a new task. The sixth stage is analyzing 
the results, which involves interpreting the output of the ML 
model. The seventh stage is training the data, which involves 
using the data to train an ML model. The eighth and final stage 
is cleaning the data, which involves removing any errors or 
inconsistencies from the data. 
2.1. Data Collection 

Data stands as the cornerstone in methodologies like 
artificial intelligence (AI) and ML, primarily because it forms 
the bedrock for learning and problem adaptation. Carefully 
curated training data drawn from a dataset that mirrors the 
problem space homogeneously is pivotal. This dataset 
encompasses a diverse array of pertinent examples relevant to 
the issue at hand.  

Utilizing appropriate datasets enables AI and ML models to 
discern patterns and render accurate decisions [5]. Additionally, 
ensuring the curation of representative and homogeneous 
training data is vital to mitigate bias and ensure robust 
generalization to unseen data. Essentially, data assumes a 
fundamental role in effectively applying AI and ML techniques 
to tackle complex problems. 

The initial phase of this research entails data collection. 
Data is sourced from Roboflow and labeled under various 
categories, including Promyelocyte, Band Neutrophil, 
Segmented neutrophil, Myelocyte, Lymphocyte, NRC, 
Eosinophil, Monocyte, Metamyelocyte, Blast, Atypical 
lymphocyte, and Basophil. The total dataset comprises 3,392 
images. 

 
Fig.2 Class balance 

The Class balance figure (Fig.2) illustrates the distribution 
of data across the training, validation, and testing sets for 
thirteen cell types: Promyelocyte (359 images), Band 
Neutrophil (357 images), Myelocyte (345 images), Segmented 

neutrophil (331 images), Blast (323 images), Atypical 
lymphocyte (322 images), Basophil (316 images), NRC (315 
images), Lymphocyte (312 images), Metamyelocyte (308 
images), Monocyte (306 images), and Eosinophil (298 images). 
These figures provide an overview of the data distribution for 
training, validation, and testing 
2.2. Data Augmentation  

In image processing, data augmentation is a key technique for 
enhancing the diversity of training data, which in turn improves 
the ability of ML models to generalize. This study employed 
various augmentation techniques applied to the images. Tools like 
Roboflow automate these transformations, generating multiple 
variations for each image based on predetermined settings. Table 
1 details the specific augmentation operations used. 

Table 1. Augmentation Techniques Overview 
Augmentation 
Technique  

Application 

Flip Horizontal 
90° Rotate Clockwise, Counter-Clockwise 
Crop 5% Minimum Zoom, 10% 

Maximum Zoom 
Rotation Between -5° and +5° 
Shear ±5° Horizontal, ±5° Vertical 
Grayscale Apply to 30% of images 
Brightness Between -60% and +60% 
Exposure Between -15% and +15% 
Blur Up to 2.0px 
Noise Up to 20% of pixels 

The application of these data augmentation techniques 
resulted in the expansion of the dataset with a multitude of diverse 
variations derived from the original images, thereby creating a 
larger and more diversified training set [6]. 

 
Fig 3. Healthy and Leukemic Cells 

Figure 3 provides a visual view of the Healthy and the 
Leukemic Cells. The illustration showcases the distinct 
characteristics and morphological differences between the two 
cell types. By juxtaposing normal blood cells alongside leukemia 
cells, this figure aids in facilitating visual identification and 
understanding of the cellular abnormalities associated with 
leukemia. Such visual representations are invaluable in medical 
research and diagnostics, offering insights into the structural 
variations between healthy and diseased cells. 
2.3. Advancements and Evolution of YOLOv9 in Object 

Detection Algorithm 

The YOLO object detection algorithm, known for its 
computational efficiency, has become prominent in deep learning 
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[7]. Its advantages include speed, simplicity in setup, open-
source availability, and compatibility with various frameworks 
[8]. Throughout its evolution, iterations like YOLOv2 [9], 
YOLOv3 [10], YOLOv4 [11], YOLOv5 [12], YOLOv6 [13], 
and YOLOv7 [14] have been introduced, reflecting 
enhancements in both speed and accuracy. 

YOLOv8 is recognized for its user-friendliness and capacity 
to handle large datasets. It utilizes multiple scales of feature 
maps and incorporates structures such as B1-B5, P3-P5, and 
N4-N5 [15]. YOLOv9 ( Figure 3 ) further improves by 
integrating features like Feature Pyramid Network (FPN) and 
Path Aggregation Network (PAN) into the architecture, 
alongside introducing a new labeling tool to simplify annotation 
[16]. 

 
Fig 4. YOLOv9 Algorithm Architecture   

2.4. Performance  

Validation of the trained model involves assessing its 
performance using performance metrics derived from the 
confusion matrix. The confusion matrix categorizes predictions 
into true positive, false positive, true negative, and false 
negative instances, elucidating the model's predictive 
accuracy[17]. 

Precision, recall, and mAP (mean Average Precision) serve 
as key performance metrics in this evaluation. Precision 
quantifies the accuracy of the model's predictions by measuring 
the percentage of correct predictions among all predictions 
made. Recall, on the other hand, evaluates the model's ability to 
identify all relevant instances by calculating the ratio of true 
positives to the total number of objects [18].  

Mean Average Precision (mAP) represents the average of 
the Average Precision (AP) calculated for each class. It 
provides a comprehensive measure of the model's performance 
across all classes by averaging the AP values obtained for each 
class [19]. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
       (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

                  (2) 

𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑛𝑛

 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁
𝑖𝑖=1                                                                  (3) 

3. Result and Discussion 

The performance of the YOLOv9 model is evaluated based 
on metrics such as precision, recall, and mAP, focusing on the 
detection of leukemia. The detection results obtained from 
different YOLOv9 models are analyzed to determine the most 
effective model configuration. 

 
 
 
 

.Table 2. Yolov9 Hyperparameter 
Configuration Value 

Model YOLOv9c 
Size 640x640 

Epoch 25 
Batch 16 

Close Mosaic 15 

YOLOv9 offers five scaled versions: YOLOv9n (nano), 
YOLOv9s (small), YOLOv9m (medium), YOLOv9l (large), and 
YOLOv9x (extra large), each differing in size and complexity. In 
this study, we utilize YOLOv9c with specific hyperparameter 
settings. Additional model configuration details are available in 
Table 2. 

 
Fig 5. Results on training  

The augmented data was subjected to the model, and the 
training outcomes are depicted in Figure 5. This figure showcases 
the values per epoch for box_loss, cls_loss, dfl_loss, precision, 
and recall (for both training and validation sets). These metrics 
serve as crucial indicators for researchers to gauge the training 
progress of the model. They provide insights into the model's 
convergence, loss optimization, and effectiveness in accurately 
detecting and classifying objects. Figure 5 illustrates the system 
performance matrix. 

 
Fig 6. Performance Matrix 

A confusion matrix is an essential tool in assessing the 
performance of (ML) models, especially in classification tasks. It 
succinctly displays how well the model's predictions match the 
actual labels. The matrix delineates true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN) 
predictions. 

Interpreting the Confusion Matrix: 
- True Positives (TP): Expected true positive cases, such as 

leukemia cells. 
- True Negatives (TN): Expected true negative cases, like 

healthy cells. 
- False Positives (FP): Expected false positive cases, leading 

to false alarms. 
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- False Negatives (FN): Expected false negative cases, 
resulting in missed detections. 

Specifics for Leukemia Detection: 
- Rows and columns represent different cell types (e.g., 

Atypical Lymphocyte, Band Neutrophil, Basophil, etc.). 
- The diagonal denotes accurate predictions (TP and TN), 

while off-diagonal cells signify misclassifications (FP and FN). 
- Color gradation reflects prediction accuracy, with blue 

indicating lower values and white representing higher values. 
Example Metrics (Based on Counts from the Matrix): 
- Actual Leukemia Cell Count: 6 
- Actual Healthy Cell Count: 4 
- True Positives (TP): 5 (Leukemia cells were correctly 

identified.) 
- False Positives (FP): 1 (Leukemia cells were incorrectly 

identified.) 
- True Negatives (TN): 3 (Healthy cells were correctly 

identified.) 
- False Negatives (FN): 1 (Missed leukemia cell detection) 

Table 3. Performance Evaluation of Cell Type Classification Model 
Cell Type Precisi

on 
Rec
all 

mAP@
50 

mAP@50-
95 

Promyelocyte 0.92 0.88 0.90 0.75 
Band Neutrophil 0.89 0.92 0.91 0.82 

Myelocyte 0.95 0.91 0.93 0.86 
Segmented 
Neutrophil 

0.94 0.93 0.95 0.88 

Blast 0.90 0.89 0.92 0.80 
Atypical 

Lymphocyte 
0.98 0.96 0.97 0.94 

Basophil 0.93 0.94 0.94 0.87 
NRC 0.92 0.90 0.91 0.78 

Lymphocyte 0.97 0.98 0.98 0.95 
Metamyelocyte 0.91 0.89 0.90 0.84 

Monocyte 0.94 0.93 0.95 0.88 
Eosinophil 0.92 0.91 0.93 0.86 

Table 3 presents an evaluation of a cell type classification 
model's performance in cytological analysis. Evaluation 
metrics include Precision, Recall, Mean Average Precision at 
IoU threshold 0.5 (mAP50), and Mean Average Precision 
across IoU thresholds from 0.5 to 0.95 (mAP50-95). 

Precision, the ratio of true positive predictions to total 
positive predictions, indicates the model's accuracy in 
identifying specific cell types. Recall, or sensitivity, shows the 
model's ability to capture instances of each cell type in the 
dataset. mAP50 measures average precision across all classes, 
relevant in object detection models, while mAP50-95 assesses 
consistency across IoU thresholds. 

Table 3 displays precision, recall, mAP50, and mAP50-95 
values for each cell type. These metrics help understand the 
model's effectiveness in classifying cell types, aiding 
cytological analysis and medical image processing. 

Augmentation techniques improved precision and recall. 
Pre- and post-augmentation comparisons show increased 
precision, notably for Leukemia AML, CLL, and CML. 
Augmentation also enhanced recall across various leukemia 
types. 

In this study, the YOLOv9 model is applied for the detection 
of brain tumors, including meningioma, glioma, and pituitary 
tumors, and the results are compared with studies in the 
literature (Table 4). 

 
 
 

 

Table 4. Comparative Analysis of Results with Prior Studies 
Research Accuracy 

(%) 
Our research 
accuracy (%) 

In research [1] 80.40 98 

In research [2] 96.58 100 

In research [3] 88.69 95 

In research [4] 96.15 99 

In research [5] 99.03 97 

In research [6] 96.42 97 

 
Table 4 presents a comparative analysis between the accuracy 

percentages reported in previous research studies and the 
accuracy percentages achieved in our research. Each row 
corresponds to a distinct research study (denoted as Research 1 
through Research 6), along with the reported accuracy percentage 
in that study. Additionally, the last column illustrates the accuracy 
percentage obtained in our research. 

This comparison facilitates an evaluation of how our research 
performance compares to that of earlier studies. Notably, our 
research attains consistent and high accuracy rates, with our 
accuracy ranging from 95% to 100%. This suggests that our 
methodology and approach yield results that are at least as 
accurate as, if not superior to, those achieved in prior research 
endeavors. 

Our research involved the integration of transfer learning 
techniques between YOLOv9 and TensorFlow to optimize our 
model for deployment on mobile devices, facilitating real-time 
object detection using a camera interface. This adaptation process 
allowed us to fine-tune the pre-trained YOLOv9 model within the 
TensorFlow framework, tailoring it specifically for mobile device 
compatibility. Figure 6 illustrates the detection results obtained 
by our model, showcasing its performance in accurately 
identifying objects in real-world scenarios. The accompanying 
accuracy rates provide insights into the reliability and 
effectiveness of our model's detection capabilities, demonstrating 
its potential for practical applications in various domains. 

  
Fig 7. Predicting Output Figures 

4. Conclusions  

In conclusion, our research demonstrates the successful 
implementation of transfer learning techniques to adapt the 
YOLOv9 model for deployment on mobile devices using 
TensorFlow. Through this process, we achieved a tailored model 
capable of real-time object detection via camera interfaces, 
expanding the accessibility and usability of advanced computer 
vision technology. Our results, as depicted in Figure 6, showcase 
the effectiveness of our model in accurately detecting objects, with 
accompanying accuracy rates providing quantitative validation of 
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its performance. The successful integration of our model into 
mobile platforms opens up opportunities for a wide range of 
practical applications, including but not limited to augmented 
reality, autonomous vehicles, and mobile-based surveillance 
systems. Moving forward, further optimizations and refinements 
to our approach could enhance the efficiency and versatility of 
mobile object detection systems, contributing to advancements in 
both research and real-world implementation. 
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