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1. Introduction 

In the rapidly evolving landscape of optimization problems, 
the quest for efficient solutions has fueled the development of 
innovative techniques. Among these, metaheuristic 
optimization algorithms have emerged as powerful tools for 
tackling complex, real-world optimization challenges [1]. 
These algorithms draw inspiration from natural processes, 
collective intelligence, and problem-solving heuristics to 
navigate intricate search spaces and uncover optimal or near-
optimal solutions.  

Lately, people have been using metaheuristic algorithms a 
lot to solve complex real-world problems that involve both 
many things happening at once and things that aren't 
straightforward. These algorithms give decent solutions fairly 
quickly, but there's no guarantee they'll find the absolute best 
solution for a specific problem [2]. Many nature-inspired meta-
heuristic methods are documented in the research literature. The 
Genetic Algorithm (GA) draws inspiration from Darwinian 
evolution. Widely applied in various optimization problems, 
GA is recognized as one of the most effective algorithms, 
employing two crucial combination and mutation operators [3]. 

The Differential Evolution (DE) algorithm, conceived by 
Storn and Price in the mid-1990s, stands as a powerful 
optimization technique rooted in evolutionary strategies [4]. DE 
operates by evolving a population of candidate solutions 
through the differential mutation of vectors, crossover, and 
selection mechanisms. Known for its simplicity, robustness, 
and versatility, DE has demonstrated efficacy across various 
optimization problems, making it a noteworthy subject of 
research and application in diverse domains. 

  
The Particle Swarm Optimization (PSO) algorithm, inspired 

by the collective behavior of bird flocks and fish schools, is a 
popular meta-heuristic approach for solving complex 
optimization problems. Introduced by Kennedy and Eberhart in 
1995, PSO relies on the interaction and collaboration of particles 
in a search space to iteratively converge toward optimal solutions 
[5]. Its simplicity, effectiveness, and adaptability have led to its 
widespread application in diverse domains, making it a subject of 
extensive research and practical implementation. 

In 2005, Karaboga et al. introduced the Artificial Bee Colony 
(ABC) algorithm, inspired by the collective behavior of bees [6]. 
The ABC algorithm simulates worker bees, precursor bees, and 
search bees, providing mathematical formulas for each step. 
Similar to other meta-heuristic algorithms, it has its drawbacks, 
leading to subsequent releases of improved versions.  

An optimization algorithm called the Sine Cosine Algorithm 
(SCA) is introduced in to address problems involving multiple 
randomized candidate solutions [7]. Furthermore, a mathematical 
model utilizing sine and cosine functions in sinusoidal and 
cosinusoidal (up and down) space is proposed, aiming to approach 
the ideal solution. 

Robotic systems can be defined as the combination of three 
central systems, namely mechanical, electronic, and 
computational system, working together to perform the required 
tasks [8]. In recent years, there has been a great increase in 
industrial applications of robot manipulators. This increase in 
robots has also brought with it a great challenge. Because each 
robot has a different structure, different solution approaches are 
needed to fulfill their duties. One of the most important tasks to 
be fulfilled is the robot inverse kinematics solution. Nowadays, 
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robot inverse kinematics solution and trajectory tracking attract 
the attention of researchers [9]. The inverse kinematic solution 
is to find the joint angles from the position and direction 
information of the manipulator [10].  

Inverse kinematics solution is a much more complex and 
time-consuming solution compared to forward kinematics due 
to nonlinear equations. Inverse kinematics solution of robotic 
manipulators with complex structures is in the NP 
(nondeterministic polynomial) problem group [11]. The fact 
that the inverse kinematics solution is very complex and time-
consuming plays a restrictive role in many aspects, from robot 
design to control. In the field of robotics, meta-heuristic 
methods have revolutionized the way we approach complex 
optimization problems such as inverse kinematics of robot 
manipulators, tuning PID parameters, trajectory planning, etc. 
[12, 13, 14].  

In this study, Ali Baba and Forty Thieves Algorithm (AFT) 
was used to solve the inverse kinematics problem [15]. A 
compelling reason for the preference of the AFT algorithm is 
its rapid operation, facilitated by its straightforward and 
uncomplicated structure. AFT, drawing inspiration from the 
narrative of Ali Baba and the Forty Thieves, falls under the 
category of a human-based algorithm. In this algorithm, the 
thieves play the role of search agents, the environment serves 
as the search space, positions within the town represent 
potential solutions, Ali Baba's house acts as the objective 
function, and Ali Baba symbolizes the global solution. The 
story revolves around a search-based scenario featuring a group 
of 40 thieves relentlessly pursuing Ali Baba with the primary 
goal of seeking revenge and recovering their stolen treasure by 
apprehending him. This pursuit is conducted iteratively, 
spanning multiple rounds that build upon previous iterations' 
solutions. The proposed algorithm utilizes a population to 
mirror the collective behavior of the thieves throughout their 
search. Marjaneh, the central character in the tale, consistently 
employs countermeasures to impede the gang's search mission 
in each iteration, thereby introducing elements of complexity 
and challenge into the search process. 

To increase the speed of convergence, a parameter has been 
added to AFT during its first iterations, intended to prevent 
thieves from making random searches within the search space 
once they became aware of their deception. Furthermore, an 
approach has been introduced concerning the precision of the 
data provided by the Marjaneh. As a result of these additions, 
the proposed algorithm is called Modified Ali Baba and Forty 
Thieves Algorithm (mAFT) for ease of use. 
2. Proposed Algorithm 

The AFT algorithm was developed by Malik et al., inspired 
by the well-known fairy tale Ali Baba and the Forty Thieves. 
The story involves a search-based narrative where the gang of 
thieves iteratively pursues Ali Baba, representing the 
algorithm's iterative nature. The search is based on the 
collective behavior of the thieves, akin to the algorithm's 
population representation. Marjaneh, the main character, 
repeatedly thwarts the gang's attempts, reflecting 
countermeasures in the algorithm. The town where Ali Baba 
lives serves as the search space. The tale's smart tricks and 
tactics inspire the algorithm's exploration efficiency. This 
storytelling approach serves as a foundation for the 
mathematical models that underpin the AFT algorithm's design 
and optimization.  

In this work in order to expedite the convergence rate, a 
parameter has been employed during the initial stages of the 
algorithm to deter the thieves from haphazardly exploring the 
search region when they became aware of being misled in their 
pursuit of Ali Baba. Furthermore, an alternative method has 
been suggested concerning the precision of the data provided 
by the Marjaneh. This proposed algorithm is called the 

Modified Ali Baba and the Forty Thieves (mAFT) algorithm for 
ease of understanding. The mAFT algorithm consists of three 
main cases described below: 

Case 1 The location of the thieves while chasing Ali Baba 
with guidance from an informant can be replicated as depicted in 
the following equation: 
𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑔𝑔best𝑡𝑡 + �𝑇𝑇𝑑𝑑𝑡𝑡 �best𝑖𝑖

𝑡𝑡 − 𝑦𝑦𝑖𝑖𝑡𝑡�𝑟𝑟1 + 𝑇𝑇𝑑𝑑𝑡𝑡 �𝑦𝑦𝑖𝑖𝑡𝑡 −𝑚𝑚𝑎𝑎(𝑖𝑖)
𝑡𝑡 �𝑟𝑟2� sgn (rand− 0.5) 

𝑝𝑝 ≥ 0.6− �𝑡𝑡
𝑇𝑇
�0.2,𝑞𝑞 > 𝑃𝑃𝑝𝑝𝑡𝑡             (1) 

where 𝑥𝑥𝑖𝑖𝑡𝑡+1  represents the current position of the ith thief, 𝑦𝑦𝑖𝑖𝑡𝑡 
corresponds to Ali Baba's position relative to thief i, best𝑖𝑖

𝑡𝑡 
signifies the optimal position attained by thief i, 𝑔𝑔best𝑡𝑡 denotes 
the best global position reached by any thief thus far. 𝑚𝑚𝑎𝑎(𝑖𝑖)

𝑡𝑡  
represents the level of Marjaneh's cleverness used to conceal thief 
i, 𝑇𝑇𝑑𝑑𝑡𝑡  denotes the tracking distance of the thieves defined by Eq. 
(2), 𝑃𝑃𝑝𝑝𝑡𝑡 signifies the potential perceptual ability of the thieves 
regarding Ali Baba as defined in Eq. (3). 𝑟𝑟1, 𝑟𝑟2, rand, 𝑝𝑝, and 𝑞𝑞 are 
random values generated within the range [0, 1], where 𝑝𝑝 takes 
values of either 0 or 1, sgn (rand − 0.5) can assume values of -1 
or 1, and a can be determined according to the equation displayed 
in Eq. (4). By using the 𝑝𝑝 ≥ 0.6 − �𝑡𝑡

𝑇𝑇
�0.2 inequality regarding 

the precision of the data provided by Marjaneh, the accuracy of 
the data was reduced depending on the iteration. 
𝑇𝑇𝑑𝑑𝑡𝑡 = 𝜏𝜏0𝑒𝑒−𝜏𝜏1(𝑡𝑡/𝑇𝑇)1𝜏𝜏               (2) 

where 𝜆𝜆0 (𝜆𝜆0 = 0.1) represents the ultimate estimate of the 
likelihood that the thieves will attain their objective at the 
conclusion of the search process, while 𝜆𝜆1 (𝜆𝜆1 = 2.0) serves as a 
constant parameter utilized to govern the balance between 
exploration and exploitation. 
𝑃𝑃𝑝𝑝𝑡𝑡 = 𝜆𝜆0𝑙𝑙𝑙𝑙𝑙𝑙 (𝜆𝜆1(𝑡𝑡/𝑇𝑇)𝜆𝜆0)              (3) 

where λ_0 (λ_0=0.1) represents the ultimate estimate of the 
likelihood that the thieves will attain their objective at the 
conclusion of the search process, while λ_1 (λ_1=2.0) serves as a 
constant parameter utilized to govern the balance between 
exploration and exploitation. 
𝑎𝑎 = [(𝑛𝑛 − 1) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑛𝑛, 1)             (4) 

where rand(n, 1) is a vector of random variables created in the 
range [0, 1]. 

Marjaneh adjusts her clever strategies if the quality of the 
newly proposed solution by the thieves surpasses the quality of 
their previous solutions, as determined by the following equation: 

𝑚𝑚𝑎𝑎(𝑖𝑖)
𝑡𝑡 =  �

𝑥𝑥𝑖𝑖𝑡𝑡             𝑖𝑖𝑖𝑖   𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)  ≥  𝑓𝑓(𝑚𝑚𝑎𝑎(𝑖𝑖)
𝑡𝑡 )

𝑚𝑚𝑎𝑎(𝑖𝑖)
𝑡𝑡        𝑖𝑖𝑖𝑖   𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)  <  𝑓𝑓(𝑚𝑚𝑎𝑎(𝑖𝑖)

𝑡𝑡 )
         (5) 

where 𝑓𝑓(∙) represents the fitness function’s score.  
Case 2 Thieves might become aware of being deceived and, 

consequently, they will explore fresh, randomly chosen regions, 
as specified in the manner outlined below: 

𝑥𝑥𝑖𝑖𝑡𝑡+1 = �𝑡𝑡
𝑇𝑇
�𝑇𝑇𝑑𝑑𝑡𝑡��𝑢𝑢𝑗𝑗 − 𝑙𝑙𝑗𝑗�𝑟𝑟 + 𝑙𝑙𝑗𝑗�;𝑝𝑝 ≥ 0.5, 𝑞𝑞 ≤ 𝑃𝑃𝑝𝑝𝑡𝑡           (6) 

where r represents a random value generated within the 
interval [0, 1], while 𝑢𝑢𝑗𝑗  and 𝑙𝑙𝑗𝑗 indicate the upper and lower 
boundaries of the search area along dimension j, respectively. 

In this case tracking distance of the thieves 𝑇𝑇𝑑𝑑𝑡𝑡 used by 
multiplying �𝑡𝑡

𝑇𝑇
�. As a result, early convergence was achieved by 

transforming the tracking distance of thieves into a structure that 
first increased and then decreased, as shown in Figure 1. 
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Fig. 1. Original T𝑑𝑑𝑡𝑡 and proposed iterative function for T𝑑𝑑𝑡𝑡 �𝑡𝑡

𝑇𝑇
� 

Case 3 Thieves have the potential to explore positions 
beyond those determined by Eq. (1), thereby enhancing both the 
exploration and exploitation aspects of the mAFT algorithm. 
This situation can be described as follows: 
𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑔𝑔gest𝑡𝑡 − [𝑇𝑇𝑑𝑑𝑡𝑡(best𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖𝑡𝑡)𝑟𝑟1 +  
𝑇𝑇𝑑𝑑𝑡𝑡(𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑚𝑚𝑎𝑎(𝑖𝑖)

𝑡𝑡 )𝑟𝑟2]sgn (rand− 0.5)          (7) 

3. Kinematics Analysis of Motoman SIA20D Robot 

Manipulator 

The Yaskawa Motoman SIA20D robot manipulator, a 
Japanese brand, used in the study, is shown in Figure 2. To 
solve the inverse kinematics problem with a metaheuristic 
optimization algorithm, it is necessary to obtain the forward 
kinematic solution. The forward kinematics were used to 
calculate the end-effector's final position using the joint angle 
set computed by the algorithm. The difference between this 
calculated position and the desired position, in other words, the 
positional error, was used as the fitness function. 

 
Fig. 2. Motoman SIA20D Robot manipulator and dimensions [16] 

Various methods are available for solving forward 
kinematics, and in this study, the most commonly used method, 
the Denavit-Hartenberg method, has been employed. The 
relationship between two joints is expressed by Denavit and 
Hartenberg using four parameters. The DH parameters of the 
robot manipulator are presented in Table 1, where i, a, d, α, and 
θ represent the joint number, link lengths, joint offset, twist 
angles, and joint angles, respectively. The lengths are given in 
millimeters, and the angles are provided in degrees. 

Table 1 DH parameters of Motoman SIA20D Robot manipulator 
i ai-1 (mm) αi-1 (°) di (mm) 𝜽𝜽𝒊𝒊 (°) (Range) 
1 0 -90 d1 = 410 -180< 𝜃𝜃1 <180 
2 0 90 0 -110< 𝜃𝜃2<110 
3 0 -90 d3 = 490 -170< 𝜃𝜃3<170 
4 0 90 0 -130< 𝜃𝜃4 <130 

5 0 -90 d5 = 420 -180< 𝜃𝜃5<180 
6 0 90 0 -110< 𝜃𝜃6<110 
7 0 0 d7 = 180 -180< 𝜃𝜃7<180 

Forward kinematics enables us to find the position and 
orientation of the robot's end-effector using the given joint angles, 
by utilizing the robot's kinematic equations. Essentially, its 
mathematical representation is as shown in Eq. (8). 
𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4,𝜃𝜃5,𝜃𝜃6) = (𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧 , 𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧)          (8) 

The forward kinematics of the robot manipulator can be 
determined by solving the forward kinematic equations obtained 
using the homogeneous transformation matrix seen in Eq. (9). 

𝑇𝑇𝑖𝑖𝑖𝑖−1 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖

0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖−1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 𝑑𝑑𝑖𝑖
0 0 0 1

�        (9) 

The transformation matrices obtained for each joint using the 
DH parameters and the homogeneous transformation matrix are 
shown in Eq. (10). 

𝑇𝑇10 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 0

0 −1 0 𝑑𝑑1
0 0 0 1

� 𝑇𝑇21 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 0 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 0

0 1 0 0
0 0 0 1

� 

𝑇𝑇32 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 0

0 −1 0 𝑑𝑑3
0 0 0 1

� 𝑇𝑇43 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐4 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 0 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐4 0

0 1 0 0
0 0 0 1

�(10) 

 𝑇𝑇54 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐5 0 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠5 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠5 0 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐5 0

0 −1 0 𝑑𝑑5
0 0 0 1

� 𝑇𝑇65 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠6 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠6 0 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6 0

0 1 0 0
0 0 0 1

� 

𝑇𝑇76 =  �

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐7 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠7 0 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠7 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐7 0 0

0 0 1 𝑑𝑑7
0 0 0 1

� 

The general transformation matrix is obtained by multiplying 
these obtained matrices in a forward direction, as shown in Eq. 
(11). 

 𝑇𝑇70 =   𝑇𝑇10    𝑇𝑇 2
1   𝑇𝑇32    𝑇𝑇  4

3  𝑇𝑇  5
4  𝑇𝑇 6

5   𝑇𝑇76  =  �

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑝𝑝𝑥𝑥
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 𝑝𝑝𝑦𝑦
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 𝑝𝑝𝑧𝑧
0 0 0 1

�            (11) 

The matrix  𝑇𝑇70  , as shown in Eq. (11), describes the position 
and orientation of the robot manipulator. In this equation 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦 
and 𝑝𝑝𝑧𝑧 represent the position values of the robot's end-effector, 
while 𝑟𝑟11,  𝑟𝑟12, 𝑟𝑟13, 𝑟𝑟21,  𝑟𝑟22, 𝑟𝑟23, 𝑟𝑟31,  𝑟𝑟32, 𝑟𝑟33 represent the 
rotation values of the robot's end-effector. 

The position error, or fitness value, is obtained by calculating 
the difference between the computed position and the desired 
position. 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  �(𝑝𝑝𝑥𝑥𝑑𝑑 − 𝑝𝑝𝑥𝑥𝑐𝑐)2 + (𝑝𝑝𝑦𝑦𝑑𝑑 − 𝑝𝑝𝑦𝑦𝑐𝑐)2 + (𝑝𝑝𝑧𝑧𝑑𝑑 − 𝑝𝑝𝑧𝑧𝑐𝑐)2        (12) 

where 𝑝𝑝𝑥𝑥𝑐𝑐 , 𝑝𝑝𝑦𝑦𝑐𝑐 , 𝑝𝑝𝑧𝑧𝑐𝑐represent the positions calculated by the 
algorithms, and 𝑝𝑝𝑥𝑥𝑑𝑑, 𝑝𝑝𝑦𝑦𝑑𝑑 , 𝑝𝑝𝑧𝑧𝑑𝑑 represent the desired positions. 

To explain the working principle of swarm intelligence 
algorithms for this problem in writing: each individual in the 
algorithm, equal to the population size, represents a solution set 
comprising, for instance, seven angles for each joint that allows a 
7-degree-of-freedom robot's end-effector to reach its position. 
Through competition among these individuals, the set of angles 
that achieves the desired final position while minimizing the 
position error evolves. This described working principle is 
visually represented in the form of a flowchart in Fig. 3. 
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Fig. 3. Inverse kinematics solution with metaheuristic algorithms 

4. Experimental Setup 

In this section, experimental studies comparing the 
proposed mAFT with widely used optimization techniques in 
the literature are presented. The proposed mAFT algorithm is 
compared with SCA, DE, PSO, ABC, and AFT algorithms. 
Parameter settings of the algorithms are given in Table 2. After 
running 30 separate runs for each algorithm, best, mean, and 
standard deviation values were calculated. Firstly, the 
convergence capability of the proposed algorithm was analyzed 
using 20 well-known benchmark functions to demonstrate its 
effectiveness. These benchmark functions can be categorized as 
unimodal and multimodal. 

Table 2 Parameters settings of algorithms 

The optimization performance of the algorithms was 
evaluated by examining whether they converged to a global or 
local solution for both unimodal and multimodal functions. To 
test the proposed algorithm, a comprehensive set of 20 
benchmark functions, including 10 unimodal (F1-F10) and 10 
multimodal (F11-F20) functions, as seen in Tables 3 and 4, was 
utilized. Range defines the boundary of the search space, 
dimension indicates the dimensionality of the search space, and 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 represents the global optimum in Tables 3 and 4. 

Table 3 Unimodal benchmark functions 
Function Range Dim. 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 
F1− Sphere [-100, 100] 30 0 
F2− Quartic Noise [-1.28, 1.28] 30 0 
F3− Schwefel’s 2.20 [-100, 100] 30 0 
F4− Schwefel’s 2.21 [-100, 100] 30 0 
F5− Step [-100, 100] 30 0 
F6− Schwefel’s 1.20 [-100, 100] 30 0 
F7− Rosenbrock [-30, 30] 30 0 
F8− Brown [-1, 4] 30 0 
F9− Dixon and Price [-10, 10] 30 0 
F10− Powell Singular [-4, 5] 30 0 

All algorithms were executed for 500 iterations on a set of 20 
benchmark functions, which include 10 unimodal and 10 
multimodal functions. All experiments has been run using 
MATLAB R2019A on a computer with an Intel(R) Core (TM) i5-
7500 CPU @ 3.40GHz and 8 GB of RAM. 

Table 4 Multimodal benchmark function (n: dimension of the search 
space) 

5. Experimental Results 

Unimodal functions serve as a valuable means to evaluate the 
exploitation potential of optimization algorithms. The average 
fitness (mean), best fitness (best), and standard deviation (std) 
outcomes for both mAFT and the other algorithms are presented 
in Table 5. These results were obtained through 30 running of 
each algorithm. As can be seen from Table 5, mAFT showed a 
much superior performance than other algorithms. 

 
Table 5 Results of the algorithms in unimodal benchmark test functions 

  mAFT AFT DE PSO ABC SCA 

F1 
best 3,79E-08 3,74E-05 4,30E-04 9,25E-07 21,6474 0,1366 
mean 1,21E-06 4,27E-04 1,53E-03 4,66E-03 83,7481 43,6784 
std 1,01E-06 4,42E-04 6,90E-04 0,0134 43,7348 102,2682 

F2 
best 6,29E-05 0,0229 0,0210 6,05E-03 0,4434 5,71E-03 
mean 3,71E-03 0,0634 0,0519 0,0250 1,4745 0,1440 
std 3,02E-03 0,0277 0,0158 0,0104 0,7713 0,1642 

F3 
best 1,99E-03 0,0908 0,0224 0,2808 3,6089 7,47E-03 
mean 0,0278 0,9411 0,0427 2,0754 9,2695 0,1868 
std 0,0350 0,9476 0,0157 1,8043 3,0471 0,4735 

F4 
best 0,1332 6,2865 6,9158 2,6692 54,5809 10,3866 
mean 0,3072 13,04 11,9308 4,5335 63,2262 32,8396 
std 0,1424 2,8352 2,8618 1,4421 4,2686 9,6772 

F5 
best 3,54E-07 3,19E-05 3,58E-04 0,0000 33,3892 4,1687 
mean 2,84E-06 4,43E-04 1,14E-03 0,0127 123,3942 12,3487 
std 3,96E-06 5,04E-04 5,99E-04 0,0598 82,5217 13,6954 

F6 
best 0,0154 62,1335 2,88E+04 42,1739 4,84E+04 835,5361 
mean 0,2709 283,5652 3,90E+04 225,5739 7,16E+04 9,79E+03 
std 0,3485 112,9652 5,13E+03 211,3200 1,05E+04 5,69E+03 

F7 best 24,1941 10,7364 28,9944 14,1078 9,66E+05 30,6923 

Algorithm Parameters settings 

Sine Cosine Algorithm (SCA) p = 30, a = 2, [1, r2, r3, r4] 
Differential Evolution (DE) p = 30, CR = 0.5, F = 0.5 
Particle Swarm Optimization (PSO) p = 30, w = 0.6, c1 = 1.8, 

c2 = 1.8 

Artificial Bee Colony (ABC) p = 30, a = [2, 0] 
Ali Baba and the Forty Thieves (AFT) p = 30, 𝜏𝜏0 = 1, 𝜏𝜏1 = 2, 

𝜆𝜆0 = 0.1 ,𝜆𝜆1 = 2 

Modified Ali Baba and the Forty 
Thieves (mAFT) 

p = 30, 𝜏𝜏0 = 1, 𝜏𝜏1 = 2, 
𝜆𝜆0 = 0.1 ,𝜆𝜆1 = 2 

Function  Range Dim. 𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 
F11− Qing [-500,500] 30 0 
F12− Alpine N. 1 [-10,10] 30 0 
F13− Xin-She Yang [-5,5] 30 0 
F14− Ackley [-32, 32] 30 0 
F15− Trignometric 2 [-500, 500] 30 1 
F16− Salomon [-100, 100] 30 0 
F17− Styblinski-Tang [-5, 5] 30 -39.16599×n 
F18− Griewank [-100, 100] 30 0 
F19− Xin-She Yang N.4 [-10, 10] 30 -1 
F20− Xin-She Yang N.2 [−2π, 2π] 30 0 
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mean 26,1201 146,0278 109,7393 60,2431 2,99E+06 5,68E+04 
std 0,9518 117,4616 91,3852 31,2730 1,27E+06 1,26E+05 

F8 
best 2,15E-10 2,02E-07 8,81E-07 8,31E-09 5,6500 2,21E-06 
mean 4,96E-09 4,00E-06 2,08E-06 2,25E-05 21,5444 0,0055 
std 9,23E-09 7,81E-06 1,13E-06 5,61E-05 12,9719 0,0104 

F9 
best 0,6667 0,6914 0,6796 0,6668 4,29E+03 0,8096 
mean 0,6667 2,5615 0,8717 0,9614 1,53E+04 1,14E+03 
std 6,63E-06 1,6872 0,2026 0,5457 6,64E+03 4,17E+03 

F10 
best 8,01E-06 0,0134 2,8017 2,48E-04 513,6474 0,0173 
mean 2,91E-04 0,1436 81,0033 0,0191 1,12E+03 9,1024 
std 3,35E-04 0,1577 80,5274 0,0157 359,2356 19,5399 

 
To assess the performance of optimization algorithms in 

terms of avoiding local optima and their ability to explore, the 
literature often utilizes multimodal functions as benchmark 
tests. The results, including the average (mean), best, and 
standard deviation (std) values, over 30 separate runs, are 

presented in Tables 6 to evaluate the algorithms in the context of 
multimodal functions. The outcomes presented in Table 6 indicate 
that mAFT demonstrates highly effective performance when 
applied to address multimodal challenges as well. Among 10 
multimodal comparison functions, mAFT gave the best results in 
8 functions. 

Table 6 Results of the algorithms in multimodal benchmark test functions 
  mAFT AFT DE PSO ABC SCA 

F11 
best 8,01E-04 0,5074 854,6543 0,0222 1,12E+09 3,38E+04 

mean 0,0398 9,5336 1,42E+03 4,0655 3,15E+09 3,16E+07 
std 0,1346 20,8414 248,9869 8,2497 1,17E+09 8,62E+07 

F12 
best 6,87E-05 8,59E-03 0,0317 1,37E-03 20,2762 8,51E-04 

mean 1,16E-03 0,1071 0,0771 0,0289 31,6088 0,3319 
std 1,05E-03 0,1123 0,0730 0,0650 4,8271 0,5056 

F13 
best 1,08E-09 0,0110 1,11E-04 4,84E-08 1,45E+05 7,19E-06 

mean 3,37E-06 1,2410 7,61E-03 0,0334 3,48E+06 4,7867 
std 8,05E-06 1,8387 0,0262 0,0508 5,63E+06 16,9073 

F14 
best 2,32E-05 0,9313 6,02E-03 1,78E-03 5,3457 0,0573 

mean 2,27E-04 2,9115 0,0122 1,5968 7,5231 15,1899 
std 1,68E-04 1,1217 3,81E-03 0,7917 1,1747 8,0826 

F15 
best 40,2358 89,7321 34,1135 55,3950 916,4713 94,8101 

mean 77,7058 196,3360 50,5950 202,0776 2,89E+03 431,3503 
std 29,1048 80,3187 8,1162 129,9851 1,27E+03 418,8828 

F16 
best 0,0999 0,8999 0,7028 0,4999 3,4400 0,2999 

mean 0,3932 1,4165 0,9097 0,9132 4,1855 1,0336 
std 0,1413 0,3075 0,0981 0,2921 0,4590 0,5976 

F17 
best -1,05E+03 -1,08E+03 -1,17E+03 -1,09E+03 -769,4062 -637,2641 

mean -992,1500 -996,8623 -1,17E+03 -994,0341 -703,6430 -582,9090 
std 32,7738 48,3479 6,0728 35,8785 34,6580 39,1947 

F18 
best 1,58E-08 4,30E-06 3,78E-05 8,40E-06 0,9516 8,53E-04 

mean 2,43E-07 0,0143 4,40E-03 9,97E-03 1,0358 0,4855 
std 2,64E-07 0,0202 0,0136 0,0137 0,0347 0,3176 

F19 
best -0,9891 1,50E-19 2,45E-12 2,88E-20 9,45E-11 8,91E-11 

mean -0,9465 7,97E-18 4,53E-12 1,25E-16 4,21E-10 3,50E-10 
std 0,0514 1,92E-17 1,39E-12 4,72E-16 2,41E-10 3,37E-10 

F20 
best 3,51E-12 4,18E-12 2,27E-11 3,80E-12 1,48E-06 4,91E-11 

mean 4,78E-12 8,19E-12 2,74E-11 5,00E-12 9,09E-06 9,30E-10 
std 3,58E-12 3,89E-12 2,66E-12 7,40E-13 7,95E-06 6,24E-10 
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Fig. 4. Convergence curves of all algorithms for unimodal test 

functions F1, F2, F3, F4, F5 and F6 
The convergence curves, concerning the mAFT algorithm's 

performance in solving a designated array of unimodal and 
multimodal test functions, are depicted in Fig. 4 and Fig. 5 for 
a maximum of 500 iterations. 

 
Fig. 5. Convergence curves of all algorithms for  

multimodal test functions F11, F12, F13, F14, F15 and F16 
 

 
Fig. 6. Position error (mm) graph depending on iteration

Fig. 7. Position error (mm) graph depending on computation time (s) 
As can be clearly seen from Figures 6 and 7, mAFT algorithm 

is the algorithm that obtains the lowest value of position error 
depending on both iteration and calculation time.  

Results, including average (mean), best (min), and standard 
deviation (std) values from more than 30 separate runs, are 
presented in Table 7 to evaluate the algorithms in the context of 
the inverse kinematics problem. The results presented in Table 7 
show that mAFT performs best. 
Table 7 Comparison of position error (mm) and computation time (s)   

mAFT AFT DE 

Position Error 
(mm) 

min 2,13E-05 0,0016 0,2014 
mean 0,0475 0,3144 0,9862 
std 0,0583 0,8245 0,6001 

Compuation 
Time (s) 

min 0,0141 0,0141 0,0534 
mean 0,0144 0,0145 0,0543 
std 5,76E-04 7,58E-04 9,77E-04 

  PSO ABC SCA 

Position Error 
(mm) 

min 6,66E-03 0,4933 3,50E-05 
mean 0,3782 2,8860 0,4734 
std 0,3585 2,3721 0,8768 

Compuation 
Time (s) 

min 0,0615 0,0982 0,0166 
mean 0,0632 0,1002 0,0171 
std 1,51E-03 1,94E-03 7,01E-04 

6. Conclusion 

This research involved conducting simulations to validate the 
precision and effectiveness of the mAFT algorithm in the inverse 
kinematics computation for a 7-degree of freedom serial robot 
manipulator. The intricacy and the formidable nature of the 
inverse kinematics procedure make it highly conducive to the 
application of metaheuristics. The results obtained by leveraging 
the fast and straightforward structure of the AFT algorithm are 
clearly evident from the outcomes of the conducted experimental 
studies, which are highly satisfying. It has been observed that the 
proposed methods to enhance the convergence speed of the AFT 
algorithm have yielded successful results. As a result, this has 
enabled the rapid resolution of the inverse kinematics problem for 
inverse robot manipulators. In future studies, exploring potential 
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extensions or hybrid approaches to improve the algorithm's 
efficiency and robustness could contribute to advancing the 
field of inverse kinematics for robot manipulators. 
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