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Inverse kinematics is a crucial topic in robotics, enabling robots to calculate the joint angles required to
achieve the desired end effector position and orientation. Solving the inverse kinematics problem quickly
with high accuracy is vital for robot manipulators. If sufficient speed is provided, the real-time motion
planning task of robot manipulators can be achieved. Real-time motion planning of complex robot
manipulators is not possible with classical mathematical methods. Overcoming this problem will provide
many benefits in the design and control of robot manipulators. In contemporary research, metaheuristic
approaches have become widely employed for addressing the inverse kinematics problem. This investigation
utilizes the efficient and simple Ali Baba and the Forty Thieves (AFT) algorithm to resolve the inverse
kinematics problem. To increase convergence speed of AFT, a parameter has been used in early iterations of
the algorithm to prevent thieves from randomly searching within the search area to find Ali Baba when they
realized they had been deceived. Additionally, an approach has been proposed regarding the accuracy of the
information brought by the Marjaneh. Finally, the inverse kinematics solution of the 7-DOF robot

manipulator was carried out comparatively.

1. Introduction

In the rapidly evolving landscape of optimization problems,
the quest for efficient solutions has fueled the development of
innovative  techniques. Among these, metaheuristic
optimization algorithms have emerged as powerful tools for
tackling complex, real-world optimization challenges [1].
These algorithms draw inspiration from natural processes,
collective intelligence, and problem-solving heuristics to
navigate intricate search spaces and uncover optimal or near-
optimal solutions.

Lately, people have been using metaheuristic algorithms a
lot to solve complex real-world problems that involve both
many things happening at once and things that aren't
straightforward. These algorithms give decent solutions fairly
quickly, but there's no guarantee they'll find the absolute best
solution for a specific problem [2]. Many nature-inspired meta-
heuristic methods are documented in the research literature. The
Genetic Algorithm (GA) draws inspiration from Darwinian
evolution. Widely applied in various optimization problems,
GA is recognized as one of the most effective algorithms,
employing two crucial combination and mutation operators [3].

The Differential Evolution (DE) algorithm, conceived by
Storn and Price in the mid-1990s, stands as a powerful
optimization technique rooted in evolutionary strategies [4]. DE
operates by evolving a population of candidate solutions
through the differential mutation of vectors, crossover, and
selection mechanisms. Known for its simplicity, robustness,
and versatility, DE has demonstrated efficacy across various
optimization problems, making it a noteworthy subject of
research and application in diverse domains.
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The Particle Swarm Optimization (PSO) algorithm, inspired
by the collective behavior of bird flocks and fish schools, is a
popular meta-heuristic approach for solving complex
optimization problems. Introduced by Kennedy and Eberhart in
1995, PSO relies on the interaction and collaboration of particles
in a search space to iteratively converge toward optimal solutions
[5]. Its simplicity, effectiveness, and adaptability have led to its
widespread application in diverse domains, making it a subject of
extensive research and practical implementation.

In 2005, Karaboga et al. introduced the Artificial Bee Colony
(ABC) algorithm, inspired by the collective behavior of bees [6].
The ABC algorithm simulates worker bees, precursor bees, and
search bees, providing mathematical formulas for each step.
Similar to other meta-heuristic algorithms, it has its drawbacks,
leading to subsequent releases of improved versions.

An optimization algorithm called the Sine Cosine Algorithm
(SCA) is introduced in to address problems involving multiple
randomized candidate solutions [7]. Furthermore, a mathematical
model utilizing sine and cosine functions in sinusoidal and
cosinusoidal (up and down) space is proposed, aiming to approach
the ideal solution.

Robotic systems can be defined as the combination of three
central  systems, namely mechanical, electronic, and
computational system, working together to perform the required
tasks [8]. In recent years, there has been a great increase in
industrial applications of robot manipulators. This increase in
robots has also brought with it a great challenge. Because each
robot has a different structure, different solution approaches are
needed to fulfill their duties. One of the most important tasks to
be fulfilled is the robot inverse kinematics solution. Nowadays,
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robot inverse kinematics solution and trajectory tracking attract
the attention of researchers [9]. The inverse kinematic solution
is to find the joint angles from the position and direction
information of the manipulator [10].

Inverse kinematics solution is a much more complex and
time-consuming solution compared to forward kinematics due
to nonlinear equations. Inverse kinematics solution of robotic
manipulators with complex structures is in the NP
(nondeterministic polynomial) problem group [11]. The fact
that the inverse kinematics solution is very complex and time-
consuming plays a restrictive role in many aspects, from robot
design to control. In the field of robotics, meta-heuristic
methods have revolutionized the way we approach complex
optimization problems such as inverse kinematics of robot
manipulators, tuning PID parameters, trajectory planning, etc.
[12, 13, 14].

In this study, Ali Baba and Forty Thieves Algorithm (AFT)
was used to solve the inverse kinematics problem [15]. A
compelling reason for the preference of the AFT algorithm is
its rapid operation, facilitated by its straightforward and
uncomplicated structure. AFT, drawing inspiration from the
narrative of Ali Baba and the Forty Thieves, falls under the
category of a human-based algorithm. In this algorithm, the
thieves play the role of search agents, the environment serves
as the search space, positions within the town represent
potential solutions, Ali Baba's house acts as the objective
function, and Ali Baba symbolizes the global solution. The
story revolves around a search-based scenario featuring a group
of 40 thieves relentlessly pursuing Ali Baba with the primary
goal of seeking revenge and recovering their stolen treasure by
apprehending him. This pursuit is conducted iteratively,
spanning multiple rounds that build upon previous iterations'
solutions. The proposed algorithm utilizes a population to
mirror the collective behavior of the thieves throughout their
search. Marjaneh, the central character in the tale, consistently
employs countermeasures to impede the gang's search mission
in each iteration, thereby introducing elements of complexity
and challenge into the search process.

To increase the speed of convergence, a parameter has been
added to AFT during its first iterations, intended to prevent
thieves from making random searches within the search space
once they became aware of their deception. Furthermore, an
approach has been introduced concerning the precision of the
data provided by the Marjaneh. As a result of these additions,
the proposed algorithm is called Modified Ali Baba and Forty
Thieves Algorithm (mAFT) for ease of use.

2. Proposed Algorithm

The AFT algorithm was developed by Malik et al., inspired
by the well-known fairy tale Ali Baba and the Forty Thieves.
The story involves a search-based narrative where the gang of
thieves iteratively pursues Ali Baba, representing the
algorithm's iterative nature. The search is based on the
collective behavior of the thieves, akin to the algorithm's
population representation. Marjaneh, the main character,
repeatedly thwarts the gang's attempts, reflecting
countermeasures in the algorithm. The town where Ali Baba
lives serves as the search space. The tale's smart tricks and
tactics inspire the algorithm's exploration efficiency. This
storytelling approach serves as a foundation for the
mathematical models that underpin the AFT algorithm's design
and optimization.

In this work in order to expedite the convergence rate, a
parameter has been employed during the initial stages of the
algorithm to deter the thieves from haphazardly exploring the
search region when they became aware of being misled in their
pursuit of Ali Baba. Furthermore, an alternative method has
been suggested concerning the precision of the data provided
by the Marjaneh. This proposed algorithm is called the

Modified Ali Baba and the Forty Thieves (mAFT) algorithm for
ease of understanding. The mAFT algorithm consists of three
main cases described below:

Case 1 The location of the thieves while chasing Ali Baba
with guidance from an informant can be replicated as depicted in
the following equation:

xf*t = gbest’ + [Td* (best! — yf)r, + Td* (yf —mb ) )r,] sgn (rand — 0.5)
p206-(%)024>Pp o)

where x/** represents the current position of the ith thief, yf
corresponds to Ali Baba's position relative to thief i, best!
signifies the optimal position attained by thief i, gbest® denotes
the best global position reached by any thief thus far. mfl(i)
represents the level of Marjaneh's cleverness used to conceal thief
i, Tdt denotes the tracking distance of the thieves defined by Eq.
(2), Ppt signifies the potential perceptual ability of the thieves
regarding Ali Baba as defined in Eq. (3). ry, 1y, rand, p, and q are
random values generated within the range [0, 1], where p takes
values of either 0 or 1, sgn (rand — 0.5) can assume values of -1
or 1, and a can be determined according to the equation displayed

in Eq. (4). By using the p = 0.6 — (%) 0.2 inequality regarding
the precision of the data provided by Marjaneh, the accuracy of
the data was reduced depending on the iteration.

Tdt = rye /DI )

where 4, (1o = 0.1) represents the ultimate estimate of the
likelihood that the thieves will attain their objective at the
conclusion of the search process, while 4; (4; = 2.0) serves as a
constant parameter utilized to govern the balance between
exploration and exploitation.
Pp* = Aglog (A,(t/T)*) ©)

where A_0 (A_0=0.1) represents the ultimate estimate of the
likelihood that the thieves will attain their objective at the
conclusion of the search process, while A_1 (A_1=2.0) serves as a
constant parameter utilized to govern the balance between
exploration and exploitation.

a =[n—-1)-rand (n,1) 4

where rand(n, 1) is a vector of random variables created in the
range [0, 1].

Marjaneh adjusts her clever strategies if the quality of the
newly proposed solution by the thieves surpasses the quality of
their previous solutions, as determined by the following equation:

o {xf if fGf) = f(mia)
0 if f&f) < f(mhg)

where f(+) represents the fitness function’s score.

®)

t
Ma()

Case 2 Thieves might become aware of being deceived and,
consequently, they will explore fresh, randomly chosen regions,
as specified in the manner outlined below:

X = (ﬁ) Td'[(w — |;)r +[ip = 05,9 < Pp* (6)

where r represents a random value generated within the
interval [0, 1], while uw; and [; indicate the upper and lower
boundaries of the search area along dimension j, respectively.

In this case tracking distance of the thieves Td' used by
multiplying (%) As a result, early convergence was achieved by

transforming the tracking distance of thieves into a structure that
first increased and then decreased, as shown in Figure 1.

182



IJPTE Vol, 02, No.02, pp. 181-187 December. 2023

Tracking distance (Td)

=
—Proposed

o 0 100 150 200 250 00 50 w0 s 500
Iteration

Fig. 1. Original Td¢ and proposed iterative function for Td* (i)

Case 3 Thieves have the potential to explore positions
beyond those determined by Eq. (1), thereby enhancing both the
exploration and exploitation aspects of the mAFT algorithm.
This situation can be described as follows:

x{* = ggest’ — [Td*(best] — y{)ry +
Td" (yf — mi))r;Jsgn (rand - 0.5) ™

3. Kinematics Analysis of Motoman SIA20D Robot

Manipulator

The Yaskawa Motoman SIA20D robot manipulator, a
Japanese brand, used in the study, is shown in Figure 2. To
solve the inverse kinematics problem with a metaheuristic
optimization algorithm, it is necessary to obtain the forward
kinematic solution. The forward kinematics were used to
calculate the end-effector's final position using the joint angle
set computed by the algorithm. The difference between this
calculated position and the desired position, in other words, the
positional error, was used as the fitness function.

™ d? =180 (mm)

l

ds = 420 (mm)

—Lg

d3 = 4.90 (mm)

dl = 4:10 (mm)

!

Fig. 2. Motoman SIA20D Robot m'anipulator and dimensions [16]

Various methods are available for solving forward
kinematics, and in this study, the most commonly used method,
the Denavit-Hartenberg method, has been employed. The
relationship between two joints is expressed by Denavit and
Hartenberg using four parameters. The DH parameters of the
robot manipulator are presented in Table 1, where i, a, d, a, and
0 represent the joint number, link lengths, joint offset, twist
angles, and joint angles, respectively. The lengths are given in
millimeters, and the angles are provided in degrees.

Table 1 DH parameters of Motoman SIA20D Robot manipulator

i ai-1(mm) ai-1(°) di (mm) 9; (°) (Range)
1 0 -90 dl =410 -180< 6, <180
2 0 90 0 -110< 6,<110
3 0 -90 d3 =490 -170< 6,<170
4 0 90 0 -130< 6, <130
5 0 -90 d5 =420 -180< 6,<180
6 0 90 0 -110< 6,<110
7 0 0 d7 =180 -180< 6,<180

Forward Kkinematics enables us to find the position and
orientation of the robot's end-effector using the given joint angles,
by utilizing the robot's kinematic equations. Essentially, its
mathematical representation is as shown in Eq. (8).

Fforward kinematics (91, 92! 93! 64! 65! 96) = (va pyv Pz Tx» ryt rz) (8)

The forward kinematics of the robot manipulator can be
determined by solving the forward kinematic equations obtained
using the homogeneous transformation matrix seen in Eq. (9).

cosf; —sinb;cosa; sinf;sina; a;cosH;
-1 sinf; cosB;cosa; —cosB;sina; a;sinb; ©)
¢ 0 sina;_q cosa; d;
0 0 0 1

The transformation matrices obtained for each joint using the
DH parameters and the homogeneous transformation matrix are
shown in Eq. (10).

[cos6; 0 —sinf; 0] [cosB, 0 sinB, 0]
o — sinf; 0 cosf; 0 17— sin8, 0 —cos6, 0
! 0o -1 0 d,|? 0 1 0 0
0 0 0 11 0 0 0 1]
[cosB; 0 —sinf; 0] [cos6, 0 sinB, O]
2m_ |sinB; 0 cosf; 0|3, _ |sin, 0 —cosf, O
ST=1"0" 21 0 ds d=170" 0 0 (10)

0 0 0 1 0 0 0 1]
cosf; 0 —sinf; O cosfs 0 sinfg O
ap — sinf; 0 cosfs 0 57— sinfg 0 —cosfBy O
5 0 -1 0 ds|°® 0 1 0 0
0 0 0 1 0 0 0 1

cosf, -—sinf, 0 O

6T — sinf, cos6, 0 O

7 0 0 1 d,

0 0 0 1

The general transformation matrix is obtained by multiplying
these obtained matrices in a forward direction, as shown in Eq.
(12).

Ti1 Tz Tz Px
9T=‘1’T§T§T§T§T§T$‘T=|:i o ZZ} (11)
0 0o 0 1

The matrix 9 T, as shown in Eq. (11), describes the position
and orientation of the robot manipulator. In this equation p,, p,
and p, represent the position values of the robot's end-effector,
while 711, T12: T13: 121, 122, 123, 131, 132, 133 represent the
rotation values of the robot's end-effector.

The position error, or fitness value, is obtained by calculating
the difference between the computed position and the desired
position.

Fitness = \[(Dx, = Px)? + Oy — Py)? + Pz — P2.)? (12)
where py_, py,., Dz represent the positions calculated by the
algorithms, and py,, py,, Pz, represent the desired positions.

To explain the working principle of swarm intelligence
algorithms for this problem in writing: each individual in the
algorithm, equal to the population size, represents a solution set
comprising, for instance, seven angles for each joint that allows a
7-degree-of-freedom robot's end-effector to reach its position.
Through competition among these individuals, the set of angles
that achieves the desired final position while minimizing the
position error evolves. This described working principle is
visually represented in the form of a flowchart in Fig. 3.
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Table 3 Unimodal benchmark functions
Desired /—\Positionr Metaheuristi ] 2 - _ _
Position "\_ 2 JError L Eraheristics ] s | 2 Function Range Dim. Fmin
- p F1- Sphere [-100, 100] 30 0
o) F2— Quartic Noise [-1.28, 1.28] 30 0
Calculated %
Position o | “ F3— Schwefel’s 2.20 [-100, 100] 30 0
F4— Schwefel’s 2.21 [-100, 100] 30 0
Forward Kinematics ]-7 F5- Step [-100, 100] 30 0
Fig. 3. Inverse kinematics solution with metaheuristic algorithms F6— Schwefel’s 1.20 [-100, 100] 30 0
4 E . tal Set F7— Rosenbrock [-30, 30] 30 0
- EXperimental Setup F8— Brown [-1,4] 30 0
In thi " . al studi . h F9— Dixon and Price [-10, 10] 30 0
n IS Section, experimental studies comparing e F10- Powell Singular [-4, 5] 30 0

proposed mAFT with widely used optimization techniques in
the literature are presented. The proposed mAFT algorithm is
compared with SCA, DE, PSO, ABC, and AFT algorithms.
Parameter settings of the algorithms are given in Table 2. After
running 30 separate runs for each algorithm, best, mean, and
standard deviation values were calculated. Firstly, the
convergence capability of the proposed algorithm was analyzed
using 20 well-known benchmark functions to demonstrate its
effectiveness. These benchmark functions can be categorized as
unimodal and multimodal.

Table 2 Parameters settings of algorithms

Algorithm
Sine Cosine Algorithm (SCA)
Differential Evolution (DE)
Particle Swarm Optimization (PSO)

Parameters settings
p=30,a=2,[1,r2,r3,r4]
p=30,CR=05,F=05
p=30,w=0.6,cl=18,

c2=1.8
Artificial Bee Colony (ABC) p=30,a=[2,0]
Ali Baba and the Forty Thieves (AFT) p = 30, 7, =1, 7, =2,
A=01,1,=2
Modified Ali Baba and the Forty p = 30, t,=1, 7, =2,
Thieves (MAFT) Ao=01,1 =2

The optimization performance of the algorithms was
evaluated by examining whether they converged to a global or
local solution for both unimodal and multimodal functions. To
test the proposed algorithm, a comprehensive set of 20
benchmark functions, including 10 unimodal (F1-F10) and 10
multimodal (F11-F20) functions, as seen in Tables 3 and 4, was
utilized. Range defines the boundary of the search space,
dimension indicates the dimensionality of the search space, and
fmin represents the global optimum in Tables 3 and 4.

All algorithms were executed for 500 iterations on a set of 20
benchmark functions, which include 10 unimodal and 10
multimodal functions. All experiments has been run using
MATLAB R2019A on a computer with an Intel(R) Core (TM) i5-
7500 CPU @ 3.40GHz and 8 GB of RAM.

Table 4 Multimodal benchmark function (n: dimension of the search

space)

Function Range Dim f min
F11- Qing [-500,500] 30 0
F12— Alpine N. 1 [-10,10] 30 0
F13— Xin-She Yang [-5,5] 30 0
F14— Ackley [-32, 32] 30 0
F15— Trignometric 2 [-500, 500] 30 1
F16— Salomon [-100, 100] 30 0
F17— Styblinski-Tang [-5, 5] 30 -39.16599xn
F18— Griewank [-100, 100] 30 0
F19— Xin-She Yang N.4 [-10, 10] 30 -1
F20— Xin-She Yang N.2 [2x:, 2] 30 0

5. Experimental Results

Unimodal functions serve as a valuable means to evaluate the
exploitation potential of optimization algorithms. The average
fitness (mean), best fitness (best), and standard deviation (std)
outcomes for both mAFT and the other algorithms are presented
in Table 5. These results were obtained through 30 running of
each algorithm. As can be seen from Table 5, mMAFT showed a
much superior performance than other algorithms.

Table 5 Results of the algorithms in unimodal benchmark test functions

MAFT AFT DE PSO ABC SCA
best 3,79E-08 3,74E-05 4,30E-04 9,25E-07 21,6474 0,1366
F1 mean 1,21E-06 4,27E-04 1,53E-03 4,66E-03 83,7481 43,6784
std 1,01E-06 4,42E-04 6,90E-04 0,0134 43,7348 102,2682
best 6,29E-05 0,0229 0,0210 6,05E-03 0,4434 5,71E-03
F2 mean 3,71E-03 0,0634 0,0519 0,0250 1,4745 0,1440
std 3,02E-03 0,0277 0,0158 0,0104 0,7713 0,1642
best 1,99E-03 0,0908 0,0224 0,2808 3,6089 7,47E-03
F3 mean 0,0278 0,9411 0,0427 2,0754 9,2695 0,1868
std 0,0350 0,9476 0,0157 1,8043 3,0471 0,4735
best 0,1332 6,2865 6,9158 2,6692 54,5809 10,3866
Fa mean 0,3072 13,04 11,9308 4,5335 63,2262 32,8396
std 0,1424 2,8352 2,8618 1,4421 4,2686 9,6772
best 3,564E-07 3,19E-05 3,58E-04 0,0000 33,3892 4,1687
F5 mean 2,84E-06 4,43E-04 1,14E-03 0,0127 123,3942 12,3487
std 3,96E-06 5,04E-04 5,99E-04 0,0598 82,5217 13,6954
best 0,0154 62,1335 2,88E+04 42,1739 4,84E+04 835,5361
F6 mean 0,2709 283,5652 3,90E+04 225,5739 7,16E+04 9,79E+03
std 0,3485 112,9652 5,13E+03 211,3200 1,05E+04 5,69E+03
F7 best 24,1941 10,7364 28,9944 14,1078 9,66E+05 30,6923
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mean 26,1201 146,0278 109,7393 60,2431 2,99E+06 5,68E+04
std 0,9518 117,4616 91,3852 31,2730 1,27E+06 1,26E+05
best 2,15E-10 2,02E-07 8,81E-07 8,31E-09 5,6500 2,21E-06

F8 mean 4,96E-09 4,00E-06 2,08E-06 2,25E-05 21,5444 0,0055
std 9,23E-09 7,81E-06 1,13E-06 5,61E-05 12,9719 0,0104
best 0,6667 0,6914 0,6796 0,6668 4,29E+03 0,8096

F9 mean 0,6667 2,5615 0,8717 0,9614 1,53E+04 1,14E+03
std 6,63E-06 1,6872 0,2026 0,5457 6,64E+03 4,17E+03
best 8,01E-06 0,0134 2,8017 2,48E-04 513,6474 0,0173

F10 mean 2,91E-04 0,1436 81,0033 0,0191 1,12E+03 9,1024
std 3,35E-04 0,1577 80,5274 0,0157 359,2356 19,5399

To assess the performance of optimization algorithms in
terms of avoiding local optima and their ability to explore, the
literature often utilizes multimodal functions as benchmark
tests. The results, including the average (mean), best, and
standard deviation (std) values, over 30 separate runs, are

8 functions.
Table 6 Results of the algorithms in multimodal benchmark test functions
mAFT AFT DE PSO ABC SCA
best 8,01E-04 0,5074 854,6543 0,0222 1,12E+09 3,38E+04
F11 mean 0,0398 9,5336 1,42E+03 4,0655 3,15E+09 3,16E+07
std 0,1346 20,8414 248,9869 8,2497 1,17E+09 8,62E+07
best 6,87E-05 8,59E-03 0,0317 1,37E-03 20,2762 8,51E-04
F12 mean 1,16E-03 0,1071 0,0771 0,0289 31,6088 0,3319
std 1,05E-03 0,1123 0,0730 0,0650 4,8271 0,5056
best 1,08E-09 0,0110 1,11E-04 4,84E-08 1,45E+05 7,19E-06
F13 mean 3,37E-06 1,2410 7,61E-03 0,0334 3,48E+06 4,7867
std 8,05E-06 1,8387 0,0262 0,0508 5,63E+06 16,9073
best 2,32E-05 0,9313 6,02E-03 1,78E-03 5,3457 0,0573
F14 mean 2,27E-04 2,9115 0,0122 1,5968 7,5231 15,1899
std 1,68E-04 1,1217 3,81E-03 0,7917 1,1747 8,0826
best 40,2358 89,7321 34,1135 55,3950 916,4713 94,8101
F15 mean 77,7058 196,3360 50,5950 202,0776 2,89E+03 431,3503
std 29,1048 80,3187 8,1162 129,9851 1,27E+03 418,8828
best 0,0999 0,8999 0,7028 0,4999 3,4400 0,2999
F16 mean 0,3932 1,4165 0,9097 0,9132 4,1855 1,0336
std 0,1413 0,3075 0,0981 0,2921 0,4590 0,5976
best -1,05E+03 -1,08E+03 -1,17E+03 -1,09E+03 -769,4062 -637,2641
F17 mean -992,1500 -996,8623 -1,17E+03 -994,0341 -703,6430 -582,9090
std 32,7738 48,3479 6,0728 35,8785 34,6580 39,1947
best 1,58E-08 4,30E-06 3,78E-05 8,40E-06 0,9516 8,53E-04
F18 mean 2,43E-07 0,0143 4,40E-03 9,97E-03 1,0358 0,4855
std 2,64E-07 0,0202 0,0136 0,0137 0,0347 0,3176
best -0,9891 1,50E-19 2,45E-12 2,88E-20 9,45E-11 8,91E-11
F19 mean -0,9465 7,97E-18 4,53E-12 1,25E-16 4,21E-10 3,50E-10
std 0,0514 1,92E-17 1,39E-12 4,72E-16 2,41E-10 3,37E-10
best 3,51E-12 4,18E-12 2,27E-11 3,80E-12 1,48E-06 4,91E-11
F20 mean 4,78E-12 8,19E-12 2,74E-11 5,00E-12 9,09E-06 9,30E-10
std 3,58E-12 3,89E-12 2,66E-12 7,40E-13 7,95E-06 6,24E-10

presented in Tables 6 to evaluate the algorithms in the context of
multimodal functions. The outcomes presented in Table 6 indicate
that mAFT demonstrates highly effective performance when
applied to address multimodal challenges as well. Among 10
multimodal comparison functions, mAFT gave the best results in
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functions F1, F2, F3, F4, F5 and F6
The convergence curves, concerning the mAFT algorithm'’s
performance in solving a designated array of unimodal and
multimodal test functions, are depicted in Fig. 4 and Fig. 5 for
a maximum of 500 iterations.
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Fig. 5. Convergence curves of all algorithms for
multimodal test functions F11, F12, F13, F14, F15 and F16
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Fig. 7. Position error (mm) graph depending on computation time (s)
As can be clearly seen from Figures 6 and 7, mAFT algorithm
is the algorithm that obtains the lowest value of position error
depending on both iteration and calculation time.

Results, including average (mean), best (min), and standard
deviation (std) values from more than 30 separate runs, are
presented in Table 7 to evaluate the algorithms in the context of
the inverse kinematics problem. The results presented in Table 7
show that mAFT performs best.

Table 7 Comparison of position error (mm) and computation time (s)

MAFT AFT DE
N min 213605  0,0016 0,2014
zf]ﬂ]t)'o“ BITOr  ean 00475 0,3144 0,9862
std 0,0583 0,8245 0,6001
_ min 0,0141 0,0141 0,0534
%"nr:‘ep(‘;‘)"‘t'o“ mean 0,014 0,0145 0,0543
std 576E-04  7,58E-04  9,77E-04
PSO ABC SCA
N min 6,66E-03  0,4933 3,50E-05
zgf:]t)"’” Brror ean 03782 2,8860 0,4734
std 0,3585 23721 0,8768
_ min 0,0615 0,0982 0,0166
%onr?ep(‘;‘;‘t'o“ mean  0,0632 0,1002 0,0171
std 151E-03  194E-03  7,01E-04

6. Conclusion

This research involved conducting simulations to validate the
precision and effectiveness of the mAFT algorithm in the inverse
kinematics computation for a 7-degree of freedom serial robot
manipulator. The intricacy and the formidable nature of the
inverse kinematics procedure make it highly conducive to the
application of metaheuristics. The results obtained by leveraging
the fast and straightforward structure of the AFT algorithm are
clearly evident from the outcomes of the conducted experimental
studies, which are highly satisfying. It has been observed that the
proposed methods to enhance the convergence speed of the AFT
algorithm have vyielded successful results. As a result, this has
enabled the rapid resolution of the inverse kinematics problem for
inverse robot manipulators. In future studies, exploring potential
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extensions or hybrid approaches to improve the algorithm's
efficiency and robustness could contribute to advancing the
field of inverse kinematics for robot manipulators.
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