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1. Introduction

miRNAs are a class of non-coding RNAs (ncRNAs) with a
length of 20-22 nucleotides [1]. These short ncRNAs have an 
important role in the regulation of gene expression [2]. The 
human gene encodes more than 2300 miRNAs [3]. miRNAs 
are formed from their distinctive hairpin structure by RNA 
polymerase II. Processing of pri-miRNA and pre-miRNA in 
the nucleus yields mature double-stranded miRNA. The 
binding of mature miRNA and its complementary sequences 
with mRNA acts as a post-transcriptional repression, 
degradation, and silencing mechanism [2]. These tasks include 
vital events such as cell survival, growth, proliferation and 
disease resistance controlling tumor formation [2,4,5].  

In addition, many studies are reporting the relationships 
among miRNAs and nutrigenomics [6-8]. Nutrigenomics 
examines the effect of nutrients on gene expression while 
nutrigenetics is related to the phenotypic responses of 
nutrients in the body [9]. Nutrigenomics plays an important 
role in identifying genes that cause diet-related diseases, 
revealing the mechanisms underlying these differences and 
determining a personalised diet approach [10]. Nutrigenomics 
examines food-gene interaction in three areas. First, it can act 
as a transcription factor that can bind to DNA as a result of the 
interaction of nutrients with receptors and change gene 
expression. Secondly, consumed foods can cause epigenetic 
changes. Finally, responses to diet may vary due to genetic 
differences among individuals [11]. 

Nutrigenomics provides valuable information to identify 
and integrate the relationships between foods or food-based 
metabolites and gene expression on a genome-wide level [12]. 
One of the important goals of nutrigenomic research is to 

 control systemic chronic inflammation that adversely affects 
human health. Since systemic chronic inflammation may 
increase the risk of developing diseases such as metabolic 
syndrome, cardiovascular diseases, neurodegeneration and 
cancer, the effects of genes can be modified by foods or 
bioactive components in foods. High-throughput omics 
technologies help to reveal the relationships between diet and 
disease by examining the interaction of bioactive nutrient 
components with the genome at the cellular and molecular levels 
[10].  

In this study, we aimed to investigate the evolutionary 
relationships of different miRNAs associated with 
cardiovascular diseases and lipid metabolism which are 
characterised as important diseases in nutrigenomics. For this 
purpose, alignment analysis was performed using Clustal Omega 
and a phylogenetic tree was constructed via MEGA 11.  

2. Material and Method

In literature, there are several studies mentioned disease-
related miRNAs and also their targets. Among them, we 
restricted our investigations for lipid metabolism and also 
cardiovascular diseases. For this purpose, miRNAs related to 
them were determined and then these miRNAs’ sequences were 
retrieved from miRBase. Table 1 showed miRNAs used in this 
study and their target genes in relevant diseases. 

Obtaining miRNAs were used for alignment analyses by 
using Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo). After, a 
phylogenetic tree was constructed via MEGA 11 with adjusted 
parameters including the neighbour-joining (NJ) method, genetic 
distances computed using p-distance model and even bootstrap 
resampling using 10.000 replicates [23-26]. 
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Table 1. miRNAs and target genes in diseases 

miRNA Target 
Gene 

Relevant Region/Disease References 

miR-149 AKT1 
E2F1 

AKT1 encodes one of three members of the human AKT serine-threonine 
protein kinase family, designated as alpha, beta, and gamma. 

E2F1 is a member of the E2F family of transcription factors, playing a very 
important role in the control of the cell cycle and the effect of tumour 

suppressor proteins. 

Lin et al. [13] 

miR-374 C/EBP-β 
C/EBP-β modulates the expression of genes involved in cell cycle regulation 
and body weight homeostasis. Mutation of this gene is associated with acute 

myeloid leukaemia. 
Pan et al. [14] 

miR-678 

AGT 

The protein encoded by this gene is expressed in the liver and degraded by 
the enzyme renin in response to low blood pressure. Protein plays a role in 
the maintenance of blood pressure, body fluid and electrolyte homeostasis 

and the pathogenesis of essential hypertension and preeclampsia. Mutations 
in this gene are associated with susceptibility to essential hypertension and 
can cause renal tubular dysgenesis, a severe renal tubular developmental 

disorder. 

Goyal et al. [15] 
Banik et al. [16] 

miR-201 

miR-698 

miR-27 

miR-199 

mTOR 

It belongs to a family of phosphatidylinositol kinase-related kinases. It 
mediates cellular responses to stresses such as DNA damage and nutrient 

deprivation. It is a component of two separate complexes, mTORC1, which 
controls protein synthesis, cell growth and proliferation, and mTORC2, 

which is a regulator of the actin cytoskeleton and promotes cell survival and 
cell cycle progression. This protein serves as the target for cell cycle arrest 

and immunosuppressive effects of the FKBP12-rapamycin complex. mTOR 
inhibitors are used as immunosuppressants in organ transplants. 

Alejandro et al. [17] 

miR-342 

miR-122 PPARα 
CPT1α 

PPARα regulates the expression of genes involved in fatty acid beta-
oxidation and is an important regulator of energy homeostasis. 

Gatfield et al. [18] 
Wei et al. [19] 

miR-429 ACE-2 
ACE-2 is the primary enzyme in the renin-angiotensin system. It could play 

a critical gene in chronic kidney disease. Moreover, ACE2 inhibits 
epithelial-mesenchymal transition via regulating vimentin and α-SMA. 

Zhang et al. [20] 

miR-370 CPT1α 
CPT1α is a key enzyme in carnitine-dependent transport across the 

mitochondrial inner membrane, and its deficiency results in a reduced rate of 
fatty acid beta-oxidation. 

Benatti et al. [21] 

miR-130 PPARɣ 
PPARɣ is a regulator of adipocyte differentiation. It has been implicated in 
the pathology of many diseases including obesity, diabetes, atherosclerosis, 

and cancer. 
Pan et al. [14] 

miR-330 
AGTR2 

It belongs to the G-protein coupled receptor 1 family and functions as a 
receptor for angiotensin II. It is an integral membrane protein that is highly 
expressed in the fetus and neonate, but slightly expressed in adult tissues 

except for the brain, adrenal medulla, and atretic ovary. 
Sebastiani et al. [22] 

miR-770 

*PPARα, Peroxisome proliferator-activated receptor alpha; CPT1α, Carnitine palmitoyltransferase I; PPARɣ, Peroxisome proliferator-activated 
receptor gamma, C/EBP-β, CCAT enhancer binding protein beta; TNFRSF4, Tumor necrosis factor receptor superfamily member 4; FST, Follistatin; 
TNFα, Tumour necrosis factor alpha; IL-6, Interleukin 6; TLR4, Toll-like receptor 4; IRS-1, Insulin receptor substrat 1; mTOR, mammalian target of 

rapamycin; ACE-1.2, Angiotensin converting enzyme; AT-2, Anjiyotensin II type-2 

3. Result 

miRNA sequences belonging to Homo sapiens and Mus 
musculus related to lipid metabolism and cardiovascular 
disease were retrieved from miRBase. Alignment analysis 
indicated similarities among sequences (Figure 1). 

A phylogenetic tree was constructed by analysing 14 
miRNAs. Sequences were clustered into four separate groups. 
mmu-miR-678 is found in one distinct clade. The second 

group consisted of three miRNAs including hsa-miR-199a-3p 
and hsa-miR-122-3p. Moreover, mmu-miR-201-5p belonged to 
single clades which were basal to the branch containing other 
miRNAs. hsa-miR-770-5p and hsa-miR-374c-5p were found in 
single clades but other miRNAs indicated homology among 
them in the third group. hsa-miR-130a-5p was a sister group to 
hsa-miR-330-3p whereas hsa-miR-149-3p showed homology to 
hsa-miR-27a-5p in this group. The remaining four miRNAs 
which are hsa-miR-370-3p, hsa-miR-429, mmu-miR-698-5p and 
hsa-miR-342-3p formed the fourth group (Figure 2).  

 

 
 

Fig. 1. Clustal Omega results of miRNAs 
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Fig. 2. Phylogenetic tree 
 

4. Discussion 

It is important to regulate dietary programs to prevent 
diseases. Nowadays, cardiovascular diseases have commonly 
observed both in females and males all over the World. 
Therefore, nutrigenomic studies have gained attention to 
identify relationships between nutrition and gene expression. 
For this purpose, we determined the relationships among 
miRNAs which are involved in similar metabolic pathways. 
14 different miRNAs belonging to human and mouse 
including hsa-miR27a-5p, hsa-miR149-3p, hsa-miR374c-5p, 
mmu-miR-678, mmu-miR-698-5p, hsa-miR-199a-3p, hsa-
miR122-3p, hsa-miR342-3p, mmu-miR201-5p, hsa-miR429, 
hsa-miR370-3p, hsa-miR130a-5p, hsa-miR330-3p and hsa-
miR770-5p showed similarities and evolutionary relationships. 

There are many different studies to identify miRNA and 
disease relationships [27-29]. miR678 analysed in this study is 
one of them. The first group in the tree consisted of only 
mmu-miR-678 sequences. There are limited investigations 
related miR678 and diet. These studies reported that lipid 
metabolism and also metabolic pathways in obesity are 
regulated by miR678 [15, 30, 31]. 

We determined that hsa-miR-199a-3p, hsa-miR122-3p and 
mmu-miR201-5p were found in the second group in tree. 
Yeligar et al. [32] observed an increase in the mRNA 
expression of endothelin-1, hypoxia-inducible factor-1α, and 
inflammatory cytokines in sinusoidal endothelial cells in 
ethanol-fed rats compared to the control group. They also 
reported that miR-199 reduced the expression of hypoxia-
inducible factor-1α and endothelin-1. In addition, increased 
expression of miR-199-3p and miR-342 was observed in 
tissue pieces taken from offspring of mothers fed a low protein 
diet. Moreover, it was observed that mTOR and insulin 
secretion were normalised as a result of blocking the 
expression of these miRNAs [17]. Paula et al. [33] also 
investigated miRNA expression in slow and fast muscles of  

Piaractus mesopotamicus both when nutrient-restricted 

and refeeding. Experimental data showed that miR-199 and 
other miRNAs were up-regulated during refeeding and reduced 
expression of target genes. 

Another miRNA which is investigated in this study is miR-
122. miR-122 is a key regulator of cholesterol and fatty acid 
metabolism in the adult liver [34]. In cultured HepG2 cells, it 
was indicated that miR-122 and miR-370 play a role in the 
accumulation of hepatic triglycerides by miR-122 and miR-370 
effects [35]. Similarly, Gao et al. [36] reported the increase in 
miR-122 levels in patients with hyperlipidaemia. Moreover, 
Baselga-Escudero et al. [37] examined whether miR-122 levels 
in rat liver are associated with lipidemia in nutritional models. 
The research has shed new light on the regulation of miR-122 in 
a dyslipidemic model of obese rats and how these miRNAs are 
modulated by dietary components in the liver and peripheral 
blood mononuclear cells (PBMCs). In this respect, maternal diet 
is an important parameter to identify the effects of this diet on 
baby. For this purpose, Benatti et al. [21] evaluated the 
modulation of hepatic fatty acid synthesis, β-oxidation 
pathways, miR-122 and miR370 expression in recently weaned 
baby mice (day 28) fed a maternal diet. According to 
experimental data, it was observed that a maternal high-fat diet 
affected early lipid metabolism by modulating the expression of 
β-oxidation-related genes, miR-122 and miR-370, which may 
cause metabolic problems in adult life. de Paula Simino et al. 
[38] also analysed the same miRNAs and suggested that a 
maternal high-fat diet applied during pregnancy and lactation 
causes permanent changes in the lipid metabolism of the 
offspring. Furthermore, López et al. [39] determined the 
relationships between inflammation and iron homeostasis with 
obesity causing epigenetic changes over generations via 
gametes. As a result of the research, it was observed that the 
expression of miR-122, which is associated with inflammation 
and iron metabolism, increased in the systemic and sperm levels 
of obese subjects. There are several studies to examine miR122 
and obesity associations [40-42]. 

miR27 is another miRNA sequence related to lipid 
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metabolism. Qin et al. [43] reported that 3-O-[(E)-4-(4-
cyanophenyl)-2-oxobut-3-en-1-yl] kaempferol (Fla-CN) 
treatment ameliorated metabolic lipid disorders and increased 
miR-27 expression. Another investigation was carried out by 
Goyal et al. [15]. They analysed whether a maternal low-
protein diet administered in the prenatal period causes 
epigenetic changes in the gene expression of the brain renin-
angiotensin system in mouse fetus. They recorded significant 
changes in mRNA and protein expression in the fetal brain 
renin-angiotensin system, and even upregulation of miR-27a 
and miR-27b but downregulation of miR-330, which are the 
main regulators of hypertension in adults. In addition to this 
system, it was concluded the expression levels of miR-27 
associated with obesity in adipose tissues from different 
groups [44]. Similar results were suggested by Zou et al. [45], 
investigating the effects and mechanisms of persimmon tannin 
on adipogenic differentiation. As a result of the experiment, 
persimmon tannin caused adipocyte differentiation via PPARγ 
and miR-27. On the other hand, Sardu et al. [46] evaluated 
inflammation/oxidative stress, miRNA expression, and 
cardiovascular function at 12-month follow-up in prediabetes 
patients treated with metformin. They reported that metformin 
reduces inflammation/oxidative stress and even miR-27 
expression in obese prediabetes. 

miR27 and miR149 indicated homology as a result of 
phylogenetic analysis in our study. Similar to miR27, miR149 
is related to lipid and carbohydrate metabolisms. Increased 
level of miRNA showed enhanced long-chain fatty acids and 
suppressed the increase in glucose-induced damage and even 
reduced vascular damage [47, 48]. Shibayama et al. [49] 
observed changes in the expression of hepatic miRNA and 
genes related to lipid metabolism after 60 weeks of a high-fat 
diet administered to mice. It was reported that experimental 
data up-regulation of miR-149-3p was beneficial against 
tumours originating from a high-fat diet. In bovine, Khan et al. 
[50] reported that bta-mir-149-5p could negatively control 
adipocyte proliferation and differentiation. In addition, 
miR149 can be a marker for anti-inflammatory effects [51]. 
Chen et al. [52] identified whether non-alcoholic fatty liver 
disease can cause inflammation and apoptosis through 
endoplasmic reticulum stress. They also reported that up-
regulation of miR-149 reduced apoptosis and inflammation 
caused by endoplasmic reticulum stress. 

In phylogenetic tree, hsa-miR374 was found in the same 
group of hsa-miR27 and hsa-miR149. Similar to them, 
miR374 is related to diabetes. Paramasivam et al. [53] found 
the changes in expression of miR-128-3p, miR-374a-5p, miR-
221-3p and miR-133a-3p to prevent the development of 
diabetes. hsa-miR374 together with let-7d could also be useful 
for the risk of birth with a small fetus for gestational age [54]. 
In addition, Tan et al. [55] identified 53 potential miRNAs 
(miR-21-3p, miR-374a-5p, 144-3p, miR-500a-3p, etc.) for 
celiac disease. 

hsa-miR130a-5p showed sequence homology with hsa-
miR330-3p and hsa-miR770-5p. Kim et al. [56] revealed a 
direct correlation miR-130 levels in white adipose tissues from 
adipocytes stimulated with TNFα and mice on a high-fat diet. 
Pan et al. [57] also reported that miR-130 was able to reduce 
epididymal fat accumulation and partially regulate glucose 
tolerance in a good way by suppressing PPAR-γ in obese 
mice. To support this, Zhang et al. [58] fed mice a high-fat 
diet to analyse the polarisation of miR-130b to cause type 2 
diabetes in mice. As a result, it has been reported that miR-
130b is a regulator of macrophage polarisation and beneficial 
against adipose tissue inflammation. In another study, Al-
Rawaf [59] investigated miRNA profile according to the 
degree of obesity in adolescents. Circulating miRNAs 
including miR-130, showed significant correlation with 
plasma levels of adipokines. 

miR-330 has been also analysed in several studies. Yang et 
al. [60] measured miRNA expression in the livers of mice fed a 
high-fat diet with Affymetrix GeneChip miRNAs. They reported 
changes in several miRNA levels, including miR-330. Sun et al. 
[61] controlled the level of miR-330-5p by feeding 8-week-old 
mice with a high-fat diet for 8 weeks. As a result, it has been 
reported that a high-fat diet increases miR-330-5p levels which 
causes insulin tolerance in diabetic mice. On the other hand, 
Ortega et al. [62] investigated whether a diet enriched with nuts 
alters miRNA expression through long-chain polyunsaturated 
fatty acids. They revealed a decrease in miR-330-3p expression 
and changes in many miRNA levels. In addition to lipid 
metabolism, there are also relationships between glucose and 
miR330. Sebastiani et al. [22] reported an inverse correlation 
between miR-330-3p level and insulinemia in their miRNA 
analysis in patients with gestational diabetes mellitus. Similarly, 
Pfeiffer et al. [63] analysed miRNAs from circulating miRNAs 
associated with insulin secretion defects and glucose 
homeostasis in patients with gestational diabetes mellitus and 
non-patient control groups. As a result of the study, upregulation 
of miR-330-3p expression was reported in gestational diabetes 
mellitus patients compared to the control group. 

Increased the expression of miR-770-3p was also reported by 
Lee et al. [64]. They investigated the expression change on 
exosomal miRNAs found in the serum of aged mice after a 
short-term calorie-restricted diet. As a result of the experiment, 
it was observed that the expression of miR-770-3p and miR-500-
3p increased in direct proportion with aging, but calorie-
restricted diet decreased the expression of miR-770-3p and miR-
500-3p. In addition, experimental data have shown that miR-
770-5p is an important regulator of pancreatic β-cell 
proliferation, apoptosis and insulin secretion and that miR-770-
5p dysregulation leads to the development of gestational 
diabetes mellitus [65]. Min Wang et al. [66] observed that miR-
770-5p was significantly increased in the serum of patients with 
type 2 diabetes mellitus, as a result of reverse 
transcription-quantitative PCR. 

In the fourth group, hsa-miR342-3p was found in the sister 
clade of mmu-miR-698-5p whereas hsa-miR-429 indicated 
homology to hsa-miR370-3p. hsa-miR342-3p, and mmu-miR-
698-5p showed similarities although they belong to different 
species. Chartoumpekis et al. [67] examined the possible effects 
of miRNA during obesity formation in mice fed with a high-fat 
diet. As a result of the research, up-regulation of mmu-miR-222, 
mmu-miR-342-3p, mmu-miR-142-3p, mmu-miR-124-5p, mmu-
miR-21, mmu-miR-146a, and down-regulation of mmu-miR-
200b, mmu-miR-200c, mmu-miR-204, mmu-miR-193, mmu-
miR-378, mmu-miR-146b, mmu-miR-379, mmu-miR-122, 
mmu-miR-133b, mmu-miR-1, mmu-miR-30a, mmu-miR-192 
were reported. To support this, up-regulation of miR-342-3p was 
observed in the brain and adipose tissues of mice fed a high-fat 
and high-sucrose diet [68]. Matboli et al. [69] also analysed this 
miRNA in a different aspect. They evaluated the anti-diabetic 
nephropathy effect of caffeic acid by suppressing autophagy-
regulating miRNAs in mice. As a result of the experiment, it was 
revealed that caffeic acid can be used against diabetic kidney 
disease by suppressing miR-342, miR-133b and miR-30a. 
Homology to hsa-miR342-3p, mmu-miR-698-5p was 
investigated in germline epigenome. For this purpose, Galan et 
al. [70] mentioned an overview of paternity effect paradigms. 
They reviewed how epigenetic changes in sperm cause 
physiological changes in the offspring's later life and the effect 
of miR-698 on this phenomenon.  

hsa-miR429 showed an evolutionary relationship with hsa-
miR370-3p. Sene et al. [71] studied podocyte simplification and 
deletion of the foot process in mice on a low-protein diet. Low 
protein glomeruli isolated in the experiment showed low levels 
of miR-200a, miR-141 and miR-429. In another study, Peng et 
al. [72] revealed the role of miR-429 in subcutaneous and 
intramuscular preadipocyte proliferation and differentiation in 
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pigs. Chao et al. [73] also examined the mechanism of 
abdominal fat accumulation in chickens. As a result of 
miRNA sequencing, it was observed that miR-429-3p was 
highly expressed in a high fat chickens. Furthermore, Nguyen 
et al. [74] examined the role of miR-429-3p on myoblast 
proliferation and myogenic differentiation in their experiment.  

On the other hand, Gao et al. [36] investigated the 
relationship of circulating lipometabolism-related miRNAs 
with the presence of coronary artery disease in 
hyperlipidaemia patients in their experiment. As a result of the 
experiment, they found that increased miR-370 levels in 
plasma could provide information about coronary artery 
disease in hyperlipidaemia patients. Zhang et al. [75] 
determined how salidroside regulates lipid metabolism via 
miR-370 both in-vitro and in-vivo. They suggested that 
salidroside can regulate lipid metabolism in the liver by down-
regulating miR-370 expression in type-2 diabetes mice. 
Furthermore, Chu et al. [76] analysed the roles of miR-370 on 
lipid accumulation in their experiment, revealing miR-370 is a 
good regulatory target to reduce back fat in pigs and fight 
obesity in humans. Concordant with their results, hepatic miR-
370-122-let7 can be used to determine the first step in the 
early stages of non-alcoholic fatty liver disease [77]. 

 
5. Conclusion  

Nutrigenetics, nutrigenomics and epigenetic mechanisms 
are efficient and precise areas in defining changes in gene 
expression. In this respect, miRNAs have been widely 
analysed as biomarkers in different diseases. Therefore, it is 
important to determine evolutionary relationships among 
miRNAs which play important roles in different diseases. In 
this respect, there are several miRNAs have been widely used 
as biomarkers for cancer diagnosis. Even though miRNA-
based diagnostics are still in their infancy, they have enormous 
potential for future illness diagnostics and even gene therapy. 
To our best knowledge, this is one of the first reports to 
analyse these miRNAs in nutrigenomics and epigenetics 
manner. 
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