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1. Introduction 

In recent years, water quality has been decreasing due to 
many reasons such as industrialization, anthropogenic 
activities, urbanization, population growth, and inadequate 
water management [1]. Pharmaceutical wastes causing this 
decrease are bioactive compounds that cause water pollution, 
including seas, oceans, underground, and surface waters [2]. As 
a source of pharmaceutical waste, antibiotics are among the 
drug groups with the highest consumption in medicine, 
agriculture, and aquaculture. The worldwide consumption of 
antibiotics, which was 63,151 tons in 2010, is expected to 
increase by 67% by 2030 [3]. Especially developing countries 
spend 35% of their health budgets on antibiotics. It has been 
determined that antibiotics are sold without a prescription and 
used incorrectly and excessively in most countries [4]. 
Antibiotics are used in the treatment of infections due to 
inhibition of cell growth and as feed additives due to support 
animal growth. These chemotherapeutic agents, which inhibit 
the growth of microorganisms (bacteria, fungi, protozoa, or 
viruses) are not biodegradable and can bioaccumulate in the 
environment even at very low concentrations. Antibiotic 
compounds such as tetracyclines, tylosin, sulfamethazine, 
amprolium, and nicarbazine are found in wetlands and soils that 
are close to urban or agricultural areas [5].  

 
The entry of antibiotics into water resources is mainly 

attributed to two reasons. The first of these is the contamination 
of surface water, groundwater, and soil by entering the sewerage 
and wastewater network [6]. Antibiotic contamination by sewage 
rises from the excretion of approximately 70% of antibiotics 
through feces and urine without being digested [7]. Apart from 
this, the fact that wastewater treatment plants are not designed for 
antibiotic treatment has created antibiotic resistance in 
wastewater treatment plants [8]. The second main cause of 
antibiotic pollution is the disposal of expired antibiotics that are 
consumed in hospital services or domestic [9]. In addition to the 
fact that hospital wastewater is an environment where antibiotic 
resistance is intense, it also contains other pollutants that 
microorganisms can transfer genes [10]. Some different 
antibiotics such as β-lactam, streptomycin, and aminoglycosides 
are produced naturally by bacteria in the soil [11]. Antibiotics can 
affect the bacterial colony found in wastewater networks. In 
addition, bacterial activities in sewage treatment systems are 
inhibited in the presence of antibiotics, and it may alter the 
decomposition of organic matter [12, 13]. Although the 
concentration of antibiotics in wetlands is very low (e.g., ng or 
μg), the accumulation of antibiotics in humans, animals, and 
plants can also cause diseases [14, 15].  
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Various adsorbents such as nZVI are used for the removal 
of antibiotics from wastewaters. However, due to the low 
particle size of these adsorbents, agglomeration limits the 
surface area and reduces the removal capacity. For this reason, 
natural mineral clays such as bentonite are used as support 
materials for nZVI for the removal of antibiotics due to their 
high chemical and mechanical stability, high cation exchange 
capacity, and large surface area. Bentonite is one of the 
effective particle stabilizers in the supported nZVI system 
which reduces aggregation and improves removal capacity. In 
this study, the synthesis of nZVI/bentonite supported-nZVI and 
their removal performances of antibiotics from wastewaters 
were investigated. 

2. Antibiotic Pollution in Water Sources 

The rapid increase in antibiotic consumption has led to 
detectable concentrations in aquatic environments such as 
groundwaters, surface waters, agricultural ecosystems, and 
sewage waters.  In recent years, new studies have been carried 
out to detect antibiotics and their derivatives in aquatic 
environments depending on the developments in water 
treatment technologies. In a study, active ingredients of 
antibiotics such as erythromycin, macrolides and 
clarithromycin, ciprofloxacin, norfloxacin, enrofloxacin, and 
lomefloxacin were detected in tap water in Madrid (Spain), 
Macau, and Guangzhou (China) [16]. Similarly, ciprofloxacin 
(653 ng/g), norfloxacin (5770 ng/g), oxytetracycline (652 ng/g), 
and ofloxacin (1290 ng/g) were found in water samples 
collected from the Pearl, Hai, Liao, and Yellow rivers in China 
[17]. López-Serna et al. (2013) reported that 72 drugs and 23 
by-products appeared in the groundwaters of Barcelona (Spain) 
[18]. In another study, the presence of erythromycin, 
sulfamethoxazole, and trimethoprim, was detected between 
0.10-16.6 ng/L in the water of the Bohai sea and these 
concentrations have been reported to pose a risk to sensitive 
aquatic organisms [19]. Unlike other pollutants in water, 
antibiotics have high biological activity on various organisms. 
The physicochemical properties of antibiotics may rise 
presence in the environment and make easier bioaccumulation 
(Table 1) [20]. Reasons for purification of aqueous solutions 
containing antimicrobial compounds can be summarized as 
below:  
• Production/consumption of a high amount of antibiotics 

by humans and animals on a world scale 
• Large amounts of antibiotics/metabolites/drugs reach the 

environment through the sewage system (feces or urine) 
• Throwing expired antibiotics/metabolites/drugs into the 

environment which may pollute the ecosystem 
• Accumulation of antibiotics by food chain or drinking 

water  
• The lack of awareness about antibiotic pollution and its 

health risks to the environment [21]. 
 

Table 1. General physicochemical properties of pharmaceutical 
wastewater [22] 

Parameter Average value 
Chemical oxygen demand COD (mg/L)  1000-10000  
Biological oxygen demand BOD (mg/L) 500-2500  
Total nitrogen (TN)(mg/L) 500-1500  
Total phosphorus (TP) (mg/L)  50-250  
Suspended solids (SS) (mg/L)  200-500  
Chromaticity (times) 500-1000  
Temperature (℃)  25-80  
pH 1-8 

 
 
 

3. Treatment Process of Antibiotics from Wastewater 

The wastewaters are the main source for the transport of 
antibiotics to urban areas and it is critical to treat wastewaters 
before discharge into the environment [23]. Antibiotic 
accumulation in the environment occurs with discharges from 
wastewaters of pharmaceutical industries, hospitals, and medical 
centers, which contain high drug contamination in their 
wastewaters [24]. Antibiotic pollution in water resources causes 
potentially toxic effects on microorganisms, plants, animals, and 
humans [25]. Many treatment methods such as adsorption [26], 
membrane filtration [27], oxidation [28], biodegradation [29], 
reverse osmosis [30], Fenton reactions [31], coagulation-
flocculation [32] are used for the treatment of antibiotics from 
wastewater (Table 2). Conventional water treatment technologies 
including biological treatment, filtration, coagulation, 
flocculation, and sedimentation have been found to be ineffective 
in eliminating antibiotics completely [33]. The disadvantages of 
these methods are the cost of implementation, catalyst 
management, and toxicity of by-products [34].  

Choi et al. (2007) extensively investigated the ion exchange 
method for the removal of pharmaceutical compounds, and they 
reported that the method was ineffective due to backwashing and 
clogging of resins [35]. The distinctive properties of reverse 
osmosis (RO) are the lack of phase change and low energy 
consumption. In RO systems, the average antibiotic removal rate 
changes around 90.2% and 90.3% for distilled water and river 
water, respectively. By using two or three sequent RO units, 99%, 
and 99.9% removal rates can be achieved in the treatment, 
respectively. The use of RO in water treatment systems is 
generally economical but may be more suitable for removing 
antibiotic compounds from drinking water [36]. Nanofiltration 
(NF) membranes are a promising method for antibiotic removal 
from wastewaters. Drewes et al. (2002) investigated some 
treatment technologies (activated sludge, filter, NF, and RO) to 
remove drugs from treatment plant water. None of the drugs were 
detected in tertiary treatment after NF and RO [37]. Because most 
pharmaceutical contaminants have a low molecular weight, 
ultrafiltration (UF) is seldomly used in the treatment of 
pharmaceutical waters. Ultrafiltration activated carbon and 
coagulation were used to remove some pharmaceuticals. The 
average removal efficiency was found to be 29% for UF, 50% for 
activated carbon, and 7% for coagulation [38].  

In general, membrane filtration (MF) and UF processes are 
not used single for antibiotic removal due to low performance. So, 
these processes are applied with other purification methods such 
as NF or RO [39]. It has been reported that the removal 
efficiencies of some antibiotics such as diclofenac, fluoxetine, 
gemfibrozil, omeprazole, sulfamethoxazole, and trimethoprim 
varied about 24 and 68% with membrane bioreactors and 
activated sludge processes [40]. Treatment of tetracycline-class 
antibiotics in synthetic and river wastewaters was investigated by 
granular activated carbon and coagulation techniques. Both 
coagulation and activated carbon filtration were found to be 
efficient in tetracycline removal. However, filtration is more 
effective in the removal of tetracycline, doxycycline-cyclate and 
chlortetracycline-HCl which are difficult to remove by 
coagulation [41]. Li et al. (2008) examined the decomposition of 
oxytetracycline (OTC) in an aqueous solution by ozonation. OTC 
was treated with ozone at pH 11 for 60 min. The results showed 
that ozonation improves the biodegradation of the wastewater and 
the by-products of OTC were more toxic than the main compound 
after partial ozonation [42]. Similar studies have shown that 
ozonation is effective in the removal of antibiotics from 
wastewaters, but these treatment processes require high cost and 
energy [43]. Alaton et al. (2004) investigated ozonation of 
penicillin formulation wastes such as amoxicillin trihydrate and 
β-lactamase inhibitor potassium clavulanate at pH 2.5 and 12.0 
with different initial H2O2 concentrations. The overall 
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effectiveness of chemical oxygen demand removal ranged from 
10% to 56% by ozonation and 83% by ozone/H2O2 [44]. 
Oxidizing materials such as chlorine or hypochlorite are often 
preferred in the purification/disinfection units in water 
treatment systems due to their low costs. In this method, main 
antibiotics oxidate inactive small molecules by chlorination. A 
high concentration of chlorine is required to remove more than 
90% of antibiotics. The main limitation of this method is by-
products are more harmful than the initial component [45]. 
Several antibiotics are photosensitive (e.g., quinolones, 
tetracyclines, sulfonamides). The photolysis of antibiotics in the 
aquatic media varies for each compound according to the 
physical and chemical properties of antibiotics. In a study 
examining the optical degradation of tetracyclines, the removal 
efficiency was found to be approximately 80%. However, it was 
concluded that the wastewater treated with the by-products 
released because of photolysis is more toxic than the inlet 
wastewater. Compared to other methods, photolysis is slightly 
efficient for the removal of antibiotics, and it can only be 
applied in wastewaters containing photosensitive impurities 
and low COD concentration [46]. Incomplete photoconversion 
and photodegradation can conduce to the formation of unstable 
and toxic by-products. The amount of biodegradation for most 
pharmaceutical compounds studied at the laboratory scale is 
low. In general, biodegradation processes are not suitable for 
antibiotic removal [47]. Some antibiotics such as amoxicillin, 

imipenem, and nystatin are partially biodegradable. 
Ciprofloxacin, ofloxacin, metronidazole, and lincomycin are not 
biodegradable. So, the genotoxicity of these compounds is 
not eliminated [48]. Unlike other treatment methods, 
adsorption is considered very effective for removing 
antibiotics from water or wastewater. Adsorption has 
several merits such as low initial investment cost, easy 
applicability, and high efficiency [49]. Antibiotic removal 
from wastewaters by adsorption depends on the 
physicochemical properties of the adsorbent and the 
antibiotic. Studies have shown that the adsorption 
behaviors of antibiotics are very complex. The adsorption 
efficiency of antibiotics is characterized by several factors. 
These are adsorbent type, initial concentration of target 
compounds, pH, temperature, etc. [50]. The main sorption 
mechanisms of antibiotics include ion exchange, surface 
complexation, and hydrogen bonding [51].  

 
 
 
 
 

Table 2. Superior and weak properties of some methods used in the treatment of antibiotic-containing wastewaters [52] 
Advantage Disadvantage 

Oxidation, Ozonation, Treatment with OCl-/H2O2 

Integrated/hybrid physical and chemical process 
Easy, fast, and effective process 
Output quality (effective removal of contaminants) 
Increases the biodegradability of the product  
High efficiency and water recycling possibility 
No sludge production 
Disinfection of microorganisms 

Require some chemical substances and pre-processing 
Produce and management of oxidants  
Efficiency depends on the type of oxidant 
The short half-life of ozone 
Undefined intermediates 
Unchanging salinity ratio (ozone) 
Formation of volatile compounds, aromatic amines, and sludge 

Adsorption/Filtration 

Basic equipment and integration with other treatments  
Vary range of application  
Effective (adsorption) for target pollutants  
Highly removal efficiency 
High quality of wastewater after treatment 

Non-destructive and non-selective processes 
Efficiency depends on the properties of materials 
Regeneration cost of adsorbent/filter 
Elimination of adsorbent (burning or replacement) 
Not suitable for some industries (paper, textile, etc.) 

Advanced Oxidation Processes (AOP), Photolysis 

On-site formation of reactive radicals 
Require fewer chemicals and no sludge production  
Mineralization and rapid degradation of pollutants 
Effective removal of antibiotics, drugs, etc. 
Reduction of COD and TOD 

Suitable for lab-scale wastewater treatment 
Not suitable for large-scale applications 
Low yield 
Formation of intermediates and by-products 

 
In previous studies, activated carbon [53], bentonite 

supported nanoscale Fe/Ni bimetallic particles [54], MCM-41 
[55], biochar [56] copolymer/Fe3O4 magnetic nanocomposite 
[57], MIL-53(Al) metal–organic framework [58], agricultural 
waste [59], carbon nanotube [60], graphene oxide [61], SiO2 
nanoparticles [62] have been used as adsorbent for the water 
treatment of antibiotics.  

In recent years, nanomaterials have been found to show 
better potential in water treatment due to their unique size-
dependent properties. Nanomaterials are frequently preferred in 
adsorption studies with their properties such as large specific 
surface area, high surface free energy, adequate reactive region, 
rapid resolution, and super magnetism [63]. Nano-based 
materials have a wide range of possible applications, including 
cosmetic, pharmaceutical, and medical uses [64]. The particle 
size of nanoparticles (dispersion of particles or solid particles) 
varies range of 10-1000 nm. According to preparation 
techniques, nanoparticles, nanospheres, and nano capsules are 
obtained by encapsulation or binding to a nanoparticle matrix. 
[65]. 

4. Nano Zero-Valent Iron (nZVI) and Synthesis 
Methods 

 
Most nanomaterials are inorganic or organic and have 

incredible potential to eliminate pharmaceutical compounds in 
aqueous solutions with low cost, ease of use, and high efficiency. 
In recent years, nanoscale zerovalent iron (nZVI) technology has 
been successfully used to remove heavy metals [66], phosphorus 
[67], dyes [68], phenolic compounds [69], pesticides [70], 
antibiotics [71], chlorinated organic compounds and nitrate [72]. 
Metallic nanomaterials such as TiO2 [73], MgO [74], Co/Fe 
bimetallic [75], iron [76] have been used in antibiotic treatment. 
In these metallic nanoparticles, as the particle size decreases, the 
ratio of atoms on the surface increases. These particles have rapid 
chemical reactivity.  Interactions of these particles with other 
atoms, molecules, and complexes increase surface charge 
stabilization and provide them to use for environmental 
remediation [77]. Iron is a metallic nanoparticle and is among the 
most abundant elements. Iron is very reactive in its elemental state 
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and easily oxidized under atmospheric conditions. Therefore, it 
is usually found in the form of magnetite (Fe3O4), and hematite 
(Fe2O3) [78]. 

Nanoscale zerovalent iron (nZVI) is a type of reactive 
transition metal with a particle size of less than 100 nm (Table 
3). Compared with macroscale and nanoscale ZVI, nZVI has 
several advantages in wastewater treatment. These can be listed 
as high removal rate, low ZVI dose, controllable toxicity risk, 
and suitable for removal of many pollutants [79]. Apart from 
these, nZVI has advantages such as being abundant and cheap, 
and ease of production and reduction. The interaction/reaction 
of nZVI with target pollutants changes with the pollutant type. 
The reaction is a complex process involving adsorption, 
oxidation, reduction, surface precipitation, and surface 
complexation [72]. The nZVI consists of a core Fe(0) and an 
iron oxide shell. The core functions as a reduction, while the 
outer shell consists of reactive sites for chemical adsorption and 
electrostatic interactions (Figure 1). The shell of iron oxide has 
positive charges under acidic conditions and interacts with 
anionic contaminants. At high pH, the negatively charged 
surface creates a suitable electrostatic field for cationic 
pollutants [80]. However, the elimination of contaminants by 
bare nZVI particles may not be very effective due to their 
tendency to agglomerate, magnetic properties and the formation 
of induced precipitates, and their high oxidative properties. In 
addition, the interaction with other components in the 
environment and the difficulty of separating the strain from the 
phase after adsorption also affect the adsorption process [81]. 
The preparation of nZVI with supporting and dispersing solid 
material may prevent the agglomeration of nZVI [82]. In recent 
years, biochar [83], kaolinite [84], wheat straw [85], alkalized 
MXene [86], activated carbon [87], chitosan [88], carbon [87], 
clay [89] have been used as supporting material for nZVI in 
wastewater treatment studies [90, 91]. 

 
Figure 1. The structure of nZVI particles [92]. 

 

Apart from these, surface modification can be applied to 
prevent the agglomeration and oxidation of nZVI [93]. By 
changing the surface properties of the nanoparticle, the dispersion 
of nZVI in the aqueous medium can be improved. The 
modification increases the adsorption properties of nanoparticles 
and reduces their toxic effects [94]. In previous years, nZVI has 
been modified with coating agents such as sulfite [95], 
polyvinylpyrrolidone [96], and aluminum hydroxide [97] for 
antibiotic removal. 

Table 3. Physical and chemical properties of nZVI particles [98] 

Mean particle size 
Less than 30 nm 

Specific surface area Large than 20 m2/g 

Bulk density 0.04 ~ 5 g/cm3 

Chemical compound O (less than 0.1%), Fe (Surplus), Impurity 

(less than 0.3) 

By this time, many techniques including chemical vapor 
deposition [99], sputtering gas aggregation [100] thermal 
decomposition [101], borohydride reduction [102], the 
electrochemical method [103], etc. have been used to obtain 
metallic nanoparticles (Figure 2). These production methods are 
classified as bottom-up or top-down. The bottom-up method is the 
reduction or restructuring of bulk material to the nanoscale with 
the help of physical or chemical methods such as etching, 
grinding, etching and/or grinding [104]. Agglomerated particles 
with irregular structure and deformed by the effect of physical 
force are produced with these methods. The second involves 
physical or chemical methods to break down or reconstruct a bulk 
material at the nanoscale. The second approach, chemical 
synthesis, relies on the growth of atom-atom or molecule-
molecule nanostructures by positional coupling, and self-
assembly [99]. The borohydride reduction method is widely used 
to produce nZVI particles. Most commonly, nZVI is synthesized 
by the reduction of iron salts in aqueous media using NaBH4 as 
the reducing agent. This method provides easy application and 
chemical homogeneity [102]. In the synthesis by borohydride 
reduction method, nZVIs are obtained by the reaction of Fe(II) 
and Fe with NaBH4 or KBH4 in accordance with Equations (1-2) 
[103]. 

 
4Fe2++BH4

−+3H2O→4Fe0+H3BO3+7H+                (1) 
Fe0+2H+→Fe2++7H2↑                                                   (2) 
 
 
 
 
 

 
Figure 2. Synthesis methods and environmental applications of nZVI [93,107]. 
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NaBH4 may lead to the formation of boron in the final 
product that has toxic effects on human and animal health. Also, 
water in the synthesis reaction induces the formation of Fe-B 
alcohols and the release of boron to the aquatic media after the 
process [105]. In general, these methods contain various 
limitations and problems. Top-down methods are often 
expensive and required costly equipment. The disadvantages of 
bottom-up approaches relate to safety issues arising from the 
toxicity of sodium borohydride which generates flammable 
hydrogen gas during processing [103,106]. 

5. Bentonite Supported-nZVI 

Natural clay minerals such as clinoptilolite, sepiolite, and 
bentonite are porous aluminum silicates. Their high cation 
exchange capacities, low costs, easy applicability, and large 
surface areas make them attractive as support materials for 
nZVI. In previous studies, it has been reported that the 
agglomeration of nZVI decreases with clay support [108]. The 
particle size of clay minerals is less than 2 µm and they are 
generally classified into four main groups (kaolinite, illite, 
smectite, and vermiculite) according to structural formation. 
The main groups of clay minerals are conventional cationic clay 
and synthetic anionic clay. Clay minerals consist of two 
structural units as silica tetrahedral and aluminum/magnesium 
octahedral. Clays generally have negative surface because of 
the presence of Al3+ or Fe3+ in their structures. Tetrahedral 
layers consist of monolithic tetrahedrons that share every three 
out of four oxygens. Octahedral layers consist of octahedrons 
that share oxygen and hydroxyl anion groups with Al3+, Mg2+. 
These octahedrons are organized in a hexagon array [109, 110]. 
Bentonite, which is an important raw material among clays, is 
one of the most suitable natural minerals widely used in 
removing pollutants from the aqueous environment [111]. It is 
frequently preferred in environmental and industrial 
applications due to its ease of application, non-toxicity, low 
cost, porous structure, large surface area, high thermal and 
chemical stability [112]. Bentonite is a member of the smectite 
group and has the molecular formula that consists of mainly 
aluminum and silicium atoms, [Al4Si8O20(OH)4].nH2O. Due to 
its environmentally friendly nature, it is also used as a support 
material for nanoparticles in nanotechnology [113]. Bentonite 
(montmorillonite) has two tetrahedral layers forming a 
sandwich-like structure on the octahedral layer. It has a 
permanent negative charge due to the isomorphic substitution 
of Al3+ for Si4+ in the tetrahedral region and Mg2+ for Al3+ in 
the octahedral region [114]. Its three-layer structure (2:1) 
consists of an Al3+ octahedral layer sandwiched between two 
Si4+ tetrahedral layers. The negative surface of bentonite is 
stabilized by the exchangeable cations (Ca2+, K+, Na+ and Mg2+) 
(Table 4) [115]. Bentonite shows low hydraulic conductivity 
and good swelling capacity for the removal of antibiotics from 
wastewater [116]. Bentonite, which is naturally composed of 
montmorillonite, has an average adsorption capacity. 
Therefore, chemical modification methods are used to improve 
antibiotic removal performance in most of the studies [117]. 
The most important reasons that reduce the adsorption capacity 
of bentonite in wastewater treatment applications are the 
formation of stable colloidal suspensions due to its high 
swelling degree, the blurry image that results from particle 
aggregation due to low particle size, and the low filtration rate. 
Therefore, chemical modification methods can also facilitate 
the post-sorption separation process [118]. 

 
 
 
 
 

 
Table 4. Physical and chemical properties of bentonite [119, 120] 

Color/nature 
Light Yellow/ 

Pozzolanic 

Free swell 60% by volume 

Specific 

gravity  

2.66 CEC 

(meq/g) 

0.90 

Chemical 

composition  

Concentration 

(%)  

Chemical 

composition  

Concentration 

(%)  

SiO2  60.85  MgO  3.09  

Al2O3  14.82  K2O  0.79  

Fe2O3  4.38  TiO2  0.61  

CaO  3.67  Other  0.44  

Na2O  3.13    

 
Clay-supported zerovalent iron is commonly synthesized by 

liquid-phase reduction (Figure 3). Xi et al (2011) investigated the 
catalytic degradation of Orange II using Australian bentonite as 
the support material of nZVI particles. For the preparation of 
bentonite-supported nZVI, 5 g of bentonite was dispersed in 300 
mL of 1 M NaBH4 and the mixture was stirred for 2 h using a 
magnetic stirrer. Then, a second solution was prepared by 
dissolving 10 g of FeCl2·4H2O in ethanol and deionized water and 
added dropwise into the bentonite solution. The resulting solution 
was stirred for 1 h, then centrifuged and washed with ethanol 
[121].  

 

Figure 3. Synthesis of bentonite supported-nZVI [122]. 
 
 

Dehgani et al. (2020) used bentonite-modified nZVI for 
paraquat removal from aqueous solutions. For bentonite-nZVI 
synthesis, 100 mL of solution was prepared with 1 g bentonite, 1 
g FeCl3∙6H2O and 1 g PEG in 100 mL DI water. The solution was 
stirred in an ultrasonic bath for 30 min. Then, 50 mL of NaBH4 
(0.1 M) was added dropwise while stirring for 2 h. The precipitate 
was dried in an oven at 70°C for 12 h after separation [122]. Ye 
et al. (2021) used bentonite-supported nZVI for Cr(VI) removal. 
Bentonite-supported nZVI was prepared by the chemical 
reduction method. 1.35 g of FeCl3∙6H2O, 0.28 g of bentonite, and 
0.5 g of PVP were dissolved in a three-necked flask with 100 mL 
of ethanol-water solution. The solution was mixed with a 
mechanical stirrer for 10 min in N2 environment and 100 mL of 
0.2 M KBH4 was added dropwise with a constant pressure 
separating funnel [123]. It was found that nZVI particles prepared 
by the reduction of Fe3+ ions with NaBH4 are homogeneously 
dispersed on the bentonite surface. 

6. Bentonite Supported -nZVI on Antibiotic Removal 

Removal studies of antibiotics with nZVI synthesized with 
support materials are limited on a lab scale. The experimental 
conditions, adsorption mechanisms, and removal efficiencies of 
some antibiotic samples were presented in Table 5. Antibiotic 
removal mechanisms with bentonite-supported materials of nZVI 
may involve multiple mechanisms, including adsorption, 
oxidation, ion exchange, nitro reduction, N-denitration, and 
chelation. However, adsorption, reduction, and oxidation are the 

https://tureng.com/tr/turkce-ingilizce/hexagon
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main mechanisms for antibiotic-nZVI interactions [90]. For this 
reason, parameters such as solution pH, temperature, dosage, 
and initial antibiotic concentration affect the removal 
efficiency.  Guo et al. (2017) studied the removal of tetracycline 
(TC) by MCM-41-zeolite A loaded nZVI. It was reported that 
the adsorption of TC between pH 3-9 was completed in 30 min 
and reached equilibrium in 60 min. It was observed that at pH: 
2 and pH: 11, the time for adsorption to reach equilibrium was 
prolonged and lasted for about 3 h. The amount of adsorbed TC 
decreased at very low or very high pH levels. For example, with 
an increase in pH from 2 to 5, the removal efficiency increased 
from 94.4% to 98.7%. From the experimental results, it was 
stated that the removal efficiency of TC increased under weak 
acidic conditions. The decrease in removal efficiency with 
increasing pH was due to the decrease in electrostatic repulsion 
and hydrophobic effect [124]. In the antibiotic-adsorbent 
interaction, if the solution pH is lower than the pHZPC (point of 
zero charge) of the adsorbent, the adsorbent surface becomes 
positive. In this case, the electrostatic attractions between the 
anionic species of antibiotic and the positively charged 
adsorbent surface increase, and the removal efficiency 
increases [125]. It has been reported that solution pH 
significantly affects the removal efficiency in the degradation 
of metoprolol with sepiolite-supported nZVI. Removal 
efficiency increased under acidic conditions and decreased at 
neutral and alkaline pH [126].  

Adsorbent dosage/concentration is another important 
parameter that affects removal efficiency. Sulaiman et al. 
(2020) reported that almost all the spironolactone was removed 
at a dose of 0.25 g/L bentonite-nZVI and the removal efficiency 
did not change as the adsorbent dosage increased [127]. 
Similarly, the removal efficiency increased with increasing the 
bentonite-supported nZVI concentration for the degradation of 
amoxicillin with bentonite-supported nZVI. As the 
concentration increased, the total surface area and the number 
of available active sites for degradation increased. Therefore, 
more nZVI particles interacted with the antibiotic [128].  

Tran et al. (2020) studied oxytetracycline (OTC) degradation 
with montmorillonite-nZVI. It was stated that a decrease in OTC 
removal was observed by increasing the OTC concentration from 
50 to 200 mg/L with an adsorbent concentration of 0.6 g/L at pH 
5.0. The time to reach equilibrium was prolonged at high 
concentrations such as 150 or 200 mg/L while it decreased at low 
concentrations.  This can be explained by the fact that the active 
sites on the adsorbent surface interact with oxytetracycline up to 
a certain concentration, and the removal efficiency decreases as 
the concentration increases due to the active sites being filled 
[129]. In some cases, degradation and adsorption mechanisms are 
seen together. Adsorption can occur at both reactive and non-
reactive sites, while the degradation reaction takes place only at 
reactive sites. In this process, the removal mechanism occurs 
initially by adsorption and then by the degradation reaction at the 
active sites. When the initial concentration increases, the 
accumulation of more pollutants on the adsorbent surface at a 
fixed adsorbent dosage may prevent the degradation reaction by 
highlighting the adsorption mechanism [130]. 

Temperature also significantly affects the antibiotic removal 
efficiency. As the temperature increases, the kinetic energy of the 
antibiotic molecules may increase, and it may increase their 
interaction with the adsorbent surface. For example, Dehgani et 
al (2020) reported that the adsorption of paraquat with bentonite-
nZVI increased with an increase in temperature. The affinity of 
the paraquat that contact with the adsorbent surface increased as 
the temperature increased [122]. In antibiotic removal with 
bentonite-supported nZVI, the increased removal efficiency with 
increasing temperature may be due to the increase in 
thermodynamic motion and the average kinetic energy of the 
molecules, increase in the constant concentration of atomic 
hydrogen adsorbed for the removal of antibiotics, and the higher 
energy of the molecules to overcome the activation energy barrier 
[90]. 

 
Table 5. Experimental conditions and removal efficiencies of some antibiotics by bentonite/clay based nZVI materials (C0: Initial concentration, T: 

Temperature, t: Time) 
Supported material/nZVI Antibiotic/Drug Optimum experimental conditions Removal efficiency/ 

mechanism 
Sepiolite-nZVI [126] Metoprolol C0: 3 mg/L, dose: 0.5 g/L, pH: 3, t: 60 min 67.24% 

Degradation 
MCM-41-ZeoliteA-nZVI [124] Tetracycline C0: 100 mg/L, dose: 1 g/L, pH: 5, t: 60 min 98.7% 

Adsorption 
nZVI [131] Tetracycline pH: 2.5–6.5, t: 30 min 90% 

Adsorption,  
oxidation, reduction 

Bentonite-nZVI [128] Amoxicillin C0: 20 mg/L, dose: 4 g/L, pH: 6.7 93.5% 
Degradation 

Pumice-nZVI [89] Tetracycline C0: 50 mg/L, dose: 5 g/L, pH: 4 92% 
Adsorption, reduction 

Montmorillonite-nZVI [129] 
 

Oxytetracycline 
 

C0: 100 mg/L, dose: 0.6 g/L, pH: 5, t: 20 min 99% 
Adsorption, degradation 

Montmorillonite-
Graphenoxide-nZVI [125] 

Tetracycline (TC), 
Cefazolin (CFZ) 

C0: 5 mg/L, dose: 0.4 g, pH: 7, t: 7 min 
(TC) and 10 min (CFZ) 

TC: 100%  
CFZ: 86% 
Adsorption 

Sepiolite nanofiber nZVI [132] Tetracycline C0: 20 mg/L, dose: 1 g/L, pH:7 92.67% 
Degradation 

Zeolite PEG-nZVI [133] Amoxicillin C0: 20 mg/L, dose:  0.5 g/L, t: 75 min 100% 
Degradation 

Bentonite-supported 
Fe/Ni [134] 

Amoxicillin C0: 60 mg/L, dose: 4 g/L and 2 g/L, t: 60 min >94% 
Degradation 

Bentonite-supported nZVI 
[128] 

Amoxicillin C0: 20 mg/L, dose: 4.0 g/L, pH: 6.7 94.4% 
Degradation 

Bentonite-supported nZVI 
[127] 

Spironolactone C0: 100 ± 1.27 mg/L, pH: 7, t: 180 min 99% 
Adsorption 
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7. Conclusion 

Wastewaters from pharmaceutical industries are among the 
many factors that reduce water quality and cause environmental 
pollution. Nanoscale zero-valent iron (nZVI) technologies are 
one of the new and promising technologies for the treatment of 
antibiotic-containing wastewaters. In water treatment 
technologies, bare nZVI can have a minimum effect on the 
treatment of water contaminated with antibiotics, it can reduce 
the removal efficiency due to non-stabilized particles. In recent 
studies, clay-based minerals such as bentonite which has high 
cation exchange capacity and surface area are used as support 
materials for nZVI and provide particle stabilization in aquatic 
environments and prevent agglomeration of nanoparticles. 

Bentonite supported- nZVI can increase the removal 
efficiency of antibiotics and prevent secondary pollution 
sources in wastewater. However, the use of natural materials as 
supporting also directly affects the regeneration efficiency of 
the modified adsorbents.  

In this study, treatment methods of wastewaters containing 
antibiotics, the synthesis methods of nZVI, and the advantages 
of bentonite supported- nZVI in terms of removal efficiencies 
of different antibiotics were examined. Considering reviewed 
literature, it was concluded that bentonite-supported nZVI is an 
adsorbent with high removal potential for the treatment of 
antibiotic-containing wastewaters. 
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