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Glass fiber reinforced composites have attracted great, widely used specific industrial areas such as
defense, aerospace, etc. However, composite plates are defenseless to damage accumulation such as matrix
cracks, fiber delamination, and delamination, which limits the application of glass composites in specific
industrial areas at limited strength levels. Therefore, analysis of the behavior of composites under the out-
of-plane loads is essential to optimize such material. This study examines the out-of-plane loading
performance of multi-scale glass/epoxy composite laminate. To improve the load-carrying performance in
the direction of out-of-plane, the halloysite nanotube (HNT) particle reinforcement was introduced to the
epoxy matrix. The three-point bending tests were conducted to attain the out-of-plane load-carrying
performance. The findings show that the flexural strength increases by almost 20% for the HNT-modified
glass/epoxy composite compared to the unmodified counterpart; meanwhile, the toughness is effectively
improved with the HNT addition. Moreover, the damage process of specimens in three-point bending tests
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was detected by microscopic examination.

1. Introduction

Fiber-reinforced polymer (FRP) composites are gaining
popularity in the engineering fields of the defense, aerospace,
automotive, and marine industries due to their superior
mechanical performance [1]. Mainly glass fibers are
commonly used in the composite industries owing to their low
production costs and high mechanical properties [2, 3].
However, fiber-reinforced laminated composites are
susceptible to out-of-plane loading as they are weaker in the
thickness direction than in the lamination plane [4]. Therefore,
improving interlayer and fiber/matrix interfacial properties
indirectly affects out-of-plane load-carrying performance.
Recent studies show significant property enhancements can be
achieved in glass/epoxy composites, especially for the fiber-
matrix interface and out-of-plane loading performance [5, 6].

In light of developing nanotechnology applications, it has
been seen that modifying polymer matrix composite materials
with nanoparticle reinforcements can lead to significant
improvements in mechanical properties. Research groups
discovered the positive effects of nano-fillers such as carbon
nanotube (CNT), graphene, nano-silica, nanoclay, CaCO3, and
AI203 in improving the mechanical properties of composite
materials and observed significant improvements in tensile
and bending properties, fracture toughness, and thermal
properties. Nayak et al. investigated the effects of nanoclay
and nano-silica additives on the bending and thermal
properties of glass fiber epoxy composites [7]. They found a
10% increase in flexural strength after hybrid doping. The
addition of the fillers such as Al203 and CaCO3 affects the
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composite properties such as interlaminar shear strength, tensile
properties, flexural strength fracture toughness, and dynamic
loading response [8-11]. Moreover, Pathak et al. observed the
enhancement of flexural strength and modulus by 66% and %72,
respectively, in the graphene oxide modified to epoxy composite
[12]. The strengthening effect of CNTs on the performance of
polymer matrices provides an opportunity to enhance novel
composite materials with outstanding mechanical and physical
properties [13]. Zhang et al. revealed that fiber-reinforced
polymer (FRP)composite material with CNT addition improved
interlayer shear and bending strength by 27% and 59%,
respectively [14]. However, some disadvantages of CNT, such
as high cost, toxicity, and sedimentation shortly after mixing,
limit its wide-scale application [15-17]. On the other hand,
halloysite nanotubes, similar to CNTs with their nanotubular
geometry, are aluminosilicate with a hollow structure [18].
HNTSs have been the focus of industrial and academic research
because they can reach micron length or diameter at the
nanometer scale, can be extracted from natural deposits cheaply,
and are well dispersed in polymer matrices [19]. Scientific
studies stated that the mechanical properties of FRP composite
could be improved by doping HNTS, such as tensile and flexural
loading performance, toughness and fracture properties, and
elastic modulus [20-23]. So far, very little research has been
conducted on fiber-reinforced composite's enhanced static
loading performance via HNTs contribution in the out-of-plane
direction. Moreover, the extent to which HNT reinforcement
plays a role in the three-point bending performance of multi-
scale glass/epoxy composites remains unclear.

In this study, HNT-doped glass/epoxy composite materials
have been manufactured via hand lay-up and vacuum bagging
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methods. The effect of HNTSs reinforcing on static loading in
the direction of out-of-plane has been examined and discussed
in terms of three-point bending properties and optical fracture
surfaces.

2. Materials and Methods

2.1.Materials

The composite laminates were made from glass fiber
fabric, epoxy resin, and HNT nanoparticle reinforcement. In
this respect, 200 gr/m2 woven glass fiber fabric (0/90°) and
low-viscosity epoxy suitable for lamination and hardener
(MGS L/H 160) were purchased from Bilge Lab-Company
Firm. Halloysite nano reinforcement with properties of 20 —
40 nm diameter, 10 um length, and 98% purity was bought
from Eczacibasi Esan.

2.2.Multi-Scale Composite Laminate Production

Homogenous dispersion of nano reinforcement in
composite laminate is vital for producing specimens. In our
previous works, optimized HNT addition was determined as
2% by weight (Ulus et al. 2019, 2020, 2021). The first
production phase is mixing HNT nanoparticles in acetone in
an ultrasonic mixer for 15 minutes. Secondly, an appropriate
amount of epoxy was added to the mixture.
Epoxy/HNT/Acetone mixture was blended for 60 minutes
with 30 kHz frequency, and it was done in an ice bath to
prevent heating. Following this, in order to remove acetone
from the mixture, acetone was vaporized from the blend by
processing it for 24 hours at 70° in a vacuum oven. After
removing acetone from the mixture, hardener was added and
mechanically stirred for 5 minutes at room temperature.

Multi-scale glass fiber composite laminate manufacture
includes a combination of two different methods called hand
lay-up and vacuum bagging. Production comprises
impregnating fabrics with the epoxy/HNT mixture and curing
composite laminates. Glass fibers were layered on a metallic
surface. Each layer was impregnated by the epoxy/resin
mixture inside a vacuum bag and cured with proper conditions
related to the epoxy matrix (Figure 1). A detailed explanation
of multi-scale composite laminate production was made in our
previous work (Ozer and Kaybal 2022). Composite laminates
were produced in dimensions of 500 x 450 mm2 as a rectangle
and had a 51% fiber content ratio.
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Fig. 1. Vacuum infusion process and equipment

2.3.Three — Point Bending Test

The three-point bending test by ASTM D7264 standard
with the Shimadzu AGS test device investigated the flexural
properties of multi-scale glass fiber composite laminates
(Figure 2). The span length to thickness ratio is indicated as
32:1 in the standard. Therefore, the span length was
maintained at 115 mm, and the average thickness of the
specimen was around 3.6 mm. All tests were repeated five
times, and the mean values were considered. After the three-
point bending tests, the damaged specimens were monitored

with a DSLR camera.
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Fig. 2. Three-point bending test process

3. Results and Discussions

Flexural stress-strain curves of composite samples can be
seen in Figure 3 (a). According to the graph, the HNT-doped
nanocomposite material has a superior load-carrying
performance under flexural loading compared to the unmodified
sample. It is also observed that the elastic and plastic
deformation capability under the loading is higher in the
modified material in comparison with the pure counterpart.
These results reflect those of Khan et al. who also found that
adding of HNTs to epoxy nanocomposites had effect on their
flexural properties [24]. A significant increase in flexural
strength and strain is apparent for HNT-modified composites
(Figure 3 (b)). After the three — point bending tests, the flexural
strength values of 332.5 MPa and 276 MPa were calculated for
the HNT-modified and unmodified composites, respectively.
Therefore, approximately 20% enhancement in flexural strength
is provided by HNT addition into glass fiber epoxy composites.
This finding can be linked to occurring better adhesion between
fiber-matrix components with HNT loading as well as the better
dispersion of nanotubes. This also accords with our earlier
observations, which showed that the HNTs modification in
epoxy matrix enhances the flexural strength by 20.8% over neat
epoxy [25].
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Fig. 3. a) Stress-strain curves of glass/epoxy composites b) Flexural
Strengths of glass/epoxy composites

Static bending rigidities versus deformation of multi-scale
composites are given in Figure 4(a). The rigidity values for HNT
modified and unmodified specimens are 10.3 GPa and 8.6 GPa,
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respectively. Hence, with the HNT modification, there is a
19.8% increment for flexural rigidities of composites. The
energy absorbed until the failure of specimens is stated as
toughness. The toughness values of multi-scale composite
specimens are shown in Figure 4(b). While the flexural
toughness value for HNT modified composite was 7.34
J/mm3, it was 5.25 J/mm3 for unmodified composite samples.
As a result, almost 40% improvement is gained with HNT
modification. These outcomes are in agreement with Ulus’
findings which showed the HNTs reinforcing in fiber
composites exhibited remarkably improved flexural properties
[26].
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Fig. 4. Mechanic performance values of HNT modified and
unmodified composites a) Rigidity b) Toughness

Similar results for glass fiber-reinforced epoxy composites
can be found in the literature. In terms of the flexural strength
of unmodified glass fiber composites, values differ from 240
MPa to 400 MPa in the studies [27-31]. The closest results can
be found in studies of Singh et al. and Seretis et al. [28, 29].
This can be a result of differences in composite production
techniques among the works. On the other hand, since there is
no study related to the HNT effect on flexural properties of
glass fiber composites, the studies that investigated the CNT
effect can be compared because of the similar structure of
HNT and CNT. Rahman et al. found that flexural strength and
modulus of glass fiber composite was increased by 38% and
%22, respectively, with 0.3% by weight addition of MWCNT
[31]. In another work, Singh et al. (2018) indicated that
flexural strength and modulus increased by 13.8% and 20.4 %,
respectively, with 0.5% by weight addition of MWCNT [29].
Therefore, the HNTS’ similar improvements achieved in this
study, the use of HNT, which is more inexpensive, can be an
excellent alternative to CNT addition.

Micro images of the composite specimens after the three-
point bending test showing the damage mechanisms are given
in Figure 5. From Figure 5a, it can be seen that the more
propagated delamination occurring is for nonmodified
composites. Delamination propagation indicates a weak fiber
matrix bonding in pure composites. In addition, rarely
occurred matrix cracks in unmodified samples have mainly

transformed into delamination. Moreover, the out-of-plane
damage progression path is shorter than that of the HNT-
modified nanocomposite sample. On the other hand, a clear
benefit of HNT modification in preventing delamination is
identified in this damage analysis (Figure 5b). In the out-of-
plane direction, the longer damage propagation path compared
to the unreinforced specimen has indicated more absorbed
energy and, so, better load-carrying capacity. In accordance
with the present results, our previous studies have demonstrated
that HNTs doping in the epoxy matrix improves the performance
of the fiber-matrix interface, and so nano modification causes
enhances load-carrying performance of nanocomposites [32, 33].
The observed enhancement in the mechanical performance of
HNT-modified composites could be attributed to HNT crack
pinning and bridging, deflection, and particle debonding
fundamentally are the main toughening mechanisms [33, 34].
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Fig. 5. Composites’ damage analysis after bending test a) Unmodified
b) HNTs modified

4, Conclusion

This study investigates the effects of HNT particle addition
into glass fiber-reinforced epoxy composites in terms of flexural
properties. In order to see the effects of HNT reinforcement,
three—point bending test was applied to the specimens. 20%
improvement in flexural strength was achieved with HNT
addition compared with unmodified samples. On the other hand,
when flexural rigidities of multi-scale composite specimens
were compared, 19.8% of enhancement was determined with
HNT reinforcement. Moreover, the toughness value of
unmodified composites was increased by almost 40% with the
HNT addition. As a result, HNT reinforcement clearly has
improved the bending performance of glass fiber epoxy
composites in terms of flexural strength, rigidity, and toughness.
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