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inequalities for |H'(0)| are obtained by assuming that is also analytic at the boundary point
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different transfer functions are obtained. The related block diagrams and root-locus curves are
also presented for considered transfer functions. According to the root-locus diagrams,

marginally stable transfer functions are obtained as the natural results of the theorems proposed

in the study.

1. Introduction

Positive real functions (PRFs) play an important role in
electrical engineering. Although they are mainly used in
network synthesis as driving point impedance functions
(DPIFs) [1, 2], it is also possible to encounter PRFs in signal
processing [3], control systems [4], and even in
electromagnetic and microwave engineering [5]. Positive
realness for the systems is frequently investigated in control
theory literature [6, 7].

In [8], it is aimed to find output feedback K to make the
closed-loop system strictly positive real. It is also stated in the
same study that the passivity is equivalent to positive realness
for finite-dimensional linear time-invariant (LTI) systems.

As another application of positive realness in modern
control theory, Kalman-Yakubovich-Popov (KYP) lemma
(also known as the positive real lemma) can be given.

This lemma establishes the connection between the
frequency domain, time domain, and state-space
representation of the system [9].

In this study, we aim to investigate the boundary analysis
of PRFs in control systems.

This lemma establishes the connection between the frequency
domain, time domain, and state-space representation of the
system [9].

In this study, we aim to investigate the boundary analysis
of PRFs in control systems.
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Accordingly, the derivative of the transfer function H(s) is
considered assuming that H(s) is analytic at s =0 of the
imaginary axis with H(0) = 0. Performing sharpness analysis of
obtained inequalities, unique transfer functions and related block
diagrams with root-locus graphics are presented as the results of
the study.

Before giving the preliminary considerations, the conditions
for a transfer function to be qualified as positive real will be
given.

A transfer function is said to be positive real if it satisfies the
following conditions [10]:

i. H(s) is analytic in Rs = 0 except possibly for poles on the
axis of imaginaries,

ii. H(s) = H(s)

iii. RH(s) = 0,inMRs =0

The rest of the manuscript is organized as follows: In Section
11, the preliminary considerations are given for the theorems to
be discussed in the next section. In Section I1l, the main results

and theorems are presented with explanatory examples and
finally, conclusions are given in Section IV.

2. Preliminary Considerations

The well-known Schwarz’s Lemma, which is a consequence
of the Maximum Principle, says that if f: D — D is analytic with
f(2) = cpzP + cpp1zP*t + . where D = {z:]z| < 1then
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If(DI < |z[?, Vz € D and consequently |Cp| <1.
Moreover, if the equality |f(2)| = |z|P holds for any z #
0, or |c,| = 1 then f is a rotation, that is, f(2) = zPe'®, 0 real
[11].
Before applying Schwarz lemma, firstly, we will exploit
the following map. Consider the product

The function By(z) is called a finite Blaschke product,
where by, by, ..., b, € D.

Let
1+z
)-H(1) s—1
f@) = 1+z)+l-1(1) = (11)
where

H(s) =H() + cp(s — 1P + cpyg (s — P + - p > 1.

Note that H(1) is real and positive. Here, f(z) is an
analytic function in D, f(0) =0 and |f(2)| < 1 for |z| < 1.
Consider the function

f(2) Sp—1
P(2) = —~ 2=b by, = " 1,k =1.2,..,n
1 -bz

Here, s1,sy,..,s, are points in right half plane and
by, by, ..., b, are zeros of f(z). Also, ®(z) is an analytic
function in D, ®(0) = 0 and |®(z)| < 1 for z € D. Therefore,
®(z) satisfies the conditions of the Schwarz lemma. Thus,
from the Schwarz lemma, we obtain

1+z

o) = flzy  HE=—)-HQ) 1
@ = n_Z= by H(1+Z)+H(1)H z— by
=ty b,z 1 k=14 — bz
2P P 2p+1,p+l
il € G (7 1
2Pz 2p+1zp+1 n Z—b’
2H(1)+cp = ) 5+ G (T pyprt 1 b
2P 2Pty
*@ __ Y- - it 1
P 2D 7P 2p+1l,p+1 bk

2H + & i gyp + v (=gt * Ty
H(1
< a0 3]_[|bk|

HO) T 15 - 1
leol = 3] |[5, 1l
=1

— bz

and

This result is sharp with equality for the function

HE=| -1+ T T,

s—=1\P o, S+1 s, +1
\ 1= (S+1) Hk:ll_sk—ls—l
Sgt+1s+1
where it can be simplified as follows:

1+( 1)7” n S=Sk

k=1
H(s) = s+1 S+SkH(1).
1_(5—1) n S —Sg
s+1 k=1s + 53

For different values of p and n, different transfer functions
can be obtained. For simplicity, assume that H(1) = 1. Some
examples are given below, respectively, for p = 2 withn =1
and p = 3 with n = 2 cases:

s34+ (2s; + s

Hyozn=1(8) = @5+ D52 45,
and
5 3
Hp=2,n=3(5) = %,
where
b, =1,

b, =25, + 25, + 253 + 51, + 5153 + 5,53 + 1,
b; = 515, + S153 + S353 + 25,5,53,
a, =5, +5;+53+2,
Ay = 251S; + 25,53 + 25,55 + 515,55 + §; + 5, + 53,
Qa3 = 515,53.
For simplicity, assume that s; =s, =s; = 1. Then the
transfer functions are given as
s3+3s
352+ 1

Hp:2,n:1(s) =
and
554 10s% + 5s
Hp=2n=s(9) = 53 qos 1 1
The corresponding root-locus diagrams for Hy,—; ,,—1(s) and
Hp,—5n=3(s) are given in Figs. 1 and 2, respectively. As it can be
observed from the figures, the obtained transfer functions
correspond to marginally stable systems.
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Since the area of applicability of Schwarz Lemma is quite
wide, there exist many studies about it. Some of these studies is
called the boundary version of Schwarz Lemma. An important
result of Schwarz lemma was given by Osserman [12]. Also, it’s
still a hot topic in the mathematics literature [13-15].

It is an elementary consequence of Schwarz lemma that if f
extends continuously to some boundary point ¢ with |c| =1,
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and if [f(c)| = 1 and f'(c) exists, then |f"(c)| = 1, which is
known as the Schwarz lemma on the boundary. In [12], R.
Osserman proposed the boundary refinement of the classical
Schwarz lemma as follows:

Let f: D — D be an analytic function with f(z) = c,zP +
cp+12P*1 + -+ p = 1. Assume that there isa ¢ € 9D so that f
extends continuously to ¢, |f(c)| = 1 and f'(c) exists. Then

IF ()] = p+ il 1.2)

1+[cp|

and forp =1,

, 2
If ()= THIF0O)]
Inequality (1.2) is sharp, i. e., for ¢ = 1, equality occurs

for the function f(z) = z? IZ::Z y € [0,1]. Inequality (1.2)
important applications in

and its generalizations have
geometric theory of functions, and they are still hot topics in
the mathematics literature [13-15].

3. Main Results

In this section, boundary analysis results for the derivative
of transfer function are presented. From the definition of
PRFs, we can state that H(s) is analytic and single valued on
the right half of the s-plane. In Theorems 1 and 2 we establish
lower bounds on the derivative of H(s) for positive real
functions with H(0) = 0.

Theorem 2.1 Let H(s) = H(1) + ¢y (s — DP + cpyq(s —
1)P*1 4+ ..., p =2 be a positive real function that is also
analytic at the point s = 0 of the imaginary axis with H(0) =
0. Then

()1 = HO) (p+

The equality in (2.1) occurs for the function

(DM 4 (s - 1P

S gy

Proof. Let r(z) = zP, z € D and f(z) be the same as in

(1.1). r(2) is analytic in D and |r(z)| < 1 for |z| < 1. The

maximum principle implies that for each z € D, we have
If ()] < |r(2)]. Thus,

2(HW-2"cy])’
(H(1))2—(2?-1|cp|)2+2P-1H(1)|pc,,+2cp“|

). @.1)

H(1), p=246,....,n

is an analytic function in D and |m(z)| < 1 for |z] < 1. In
particular, using Schwarz lemma, we take

2727 2pigrH
mp =L@ GH-n (1> i e=nia Tt
(2) [H(1 + Z) + H(D)| z [ZH(l) P A (1 3 z)P + cw% + ...]zl’
2P 2P+t
Tz T e T it
2P 7P 2p+17p+1 ’
2H() + ¢, a-o7 + Cpi1 A=z +
op-1
)] =2y <
and
2p-
|m'(0)| = HOD) |PC +2¢p41)-

If |/m(0)| =1 then by the maximum principle, we have
[@ _ el® 0 € R, f(z) =e¥r(z) = zPe and

r(2)
142\ 1+zPe®
H(l —z) T1—zre®
Further we may assume
142\ , 1+2zPe®
H(l —z) * 1 —zPel®”

and thus |[m(0)| < 1.

Therefore, we take [m(0)| = |cp| <1

H (1)

In addition, since the expression %ﬁ;)

greater than or equal to 1 [16] and H(0) = 0 yields |f(¢)| = 1,
¢ =—1€ 0D, we take
cf @ _|ef©|_ .
CHEECI A
Also, since |f(2)| < |r(2)l, we get
1L-f@l_1-1r@)]
1—|z| = 1-|z| °
Without loss of generality, passing to limit in the last
inequality yields

is a real number

If' @1zl
Thus, we obtain
cf'(©
) =f' @Iz Ir' )l =
The composite function
m(z) —m(0)
1 -m(0)m(z)
satisfies the hypothesis of the Schwarz lemma on the
boundary as shown below:

First, let us show that |®(z)| < 1 for z € D. Since
Im(2) = m(0)|? = |m(2)[? — m(2)m(0) — m(0)m(z) + |m(0)|?
and

cr'(c)

0’ c € dD.

0(2) =

|1- m(O)m(Z)I2 = 1 -m(0)ym(z) — m(z)m(0) + [m(0)|*|m(2)[?,
then

Im(2) —~ m(0)[ ~ |1 — m(O)m(2)|" =
Therefore, we take

-1 =1m0)HA - m(2)I*) < 0.

Im(z) - m(O)* < |1 — m@)m(z)|
and
|0(2)| < 1.
Second, we will prove that |@(—1)| = 1 forc = —1 € aD.
Since
m(z) —m(0)
1 —m(0)m(z) -

m(z) —m(0)

@ (e~ m))

0(z) =

and

o H(3E2) - H@)

@ (1 (D) i)

then forc = —1 € aD and H(0) = 0 we take
Im(-=1| = 1.

m(z) =

In this way, we get
[o(-D)| =1
Thus, from (1.3), we obtain the estimate
<o = ——mOF
|1 - m(0)m(—1)|
1+Im(0)I|f( H f= Dr'(=1)|
ST mOI|[r-D ~ 2D |
_1+mOf_fC=D [|(= 1)f(—1)_(—1)r'(—1)|
1—mOIEDrED F-D r(-1) |
1+ |m(0)] _ _1+|m(0)| Ny
1—|m(0)|(|f( DI=-Ir'-nh = e (0)|(|f( DI =p).
Since

2 ,
T+1000)] DI

1-|m(0)I?

—= _m'(2),
(1-m©e@)’ @

0'(2) =
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Zp_1|p6p+2t‘p+1‘

' _ |mo| _ HD)
10O = Thor = 17(21’-1\@)2
HQ)

and

If (-1 = 2@

H(1) '’

we obtain

2 _H@ +27 e, | <IH'(0)I _p)
207 pc, + 2c,4| T H(1) — 2P, |\ H(D) '

H1)? - (207]ey )’
2((HW)" - (277e,|)) H(1) =2 c,|
(HW)" = (277c])" + 27 HD|pe, + 26501 HD + 277 gy

_H©
S THD

1+H)

and

2(H(1) - 2772c,|)’
H)? = (2271 c,|)* + 22T H (D) |pe, + 2c,,+1|>'
Therefore, we get the inequality (2.1).

Now, we shall show that the inequality (2.1) is sharp. Let
s+ P+ (s - 1Pt

[H'©®)| =z H(1) <p +

HE) = =g —pp H D
Then
, 4+ D(s—-DP(s+1)?
HO=G-ri— s+ ®
and
, 4(p+1

Therefore, for p = 2,4,6,...,n, we obtain
|H'(0)] = (p + DH().
On the other hand, we obtain
_(SHD)PTH (s - P

HOF &6 =17 + (s = 7" = (s + 1)p*t — (s — )P+t

H(D),

. s+1)P*+(s-1)""
6 (5-1)" 40, ,(5-1)" .. = [M*}H ),
cp(s —
1)17 + Cp+1(S - 1)p+1+.“ = 2%1‘1(1)
and
-1
€y + Cpa(s — D= 2 (s 1) HQ).

(s+ 1P+t 4 (s — 1)PH?
Passing to limit in the last equality yields c, = 0.
Similarly, using straightforward calculations, we take c¢,., =

1
z—pH(l). So, we take

H(1) <P + 2(H(D) =27 gp|)’ )
(HD) = (2771c,|)* + 201 H(D)|pe, + 2¢p. |
=@+ 1DH().

The extremal function can be considered as a transfer
function of a certain control system. For simplicity, assume
that H(1) = 1. Then, the extremal function obtained in
Theorem 1 can be rewritten as

1 p+1 + _ 1 p+1
H(s):(5+ ) (s-1 ,
(s + 1P+ — (s — )P+

This transfer function can be implemented as a block as

given in Figure 3.

p=246,...,n

_1 J
(s+1Y

> —> T (s)

\s-1/

Fig. 3: Block diagram representation of the transfer function H(s) =

(s+1)P+14+(s—1)P+1 _
m, p= 2,4,6,...,Tl.

As exemplary applications, p = 2 and p = 4 cases have been

considered. The corresponding transfer functions are given
respectively as follows:

u s34+ 3s

—(S) =

p=2(5) 3s2+1
5541053455

Hp=4(8) = S5 oey

where related root locus diagrams are given in Figs. 4 and 5,
respectively. As it can be seen from the figures, both transfer
functions belong to marginally stable systems as all the poles are
located on the imaginary axis.
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Theorem 2.2 Let H(s) = H(1) + cp(s — DP + cpyq(s —
1)P*1+.., p =2 be a positive real function that is also an
analytic at the point s = 0 of the imaginary axis with H(0) = 0.
Assume that s4, s,,..., s, are points in the right half plane that
are different from one with H(s,) = H(1), k = 1,2,...,n. Then
we have the inequality (2.2).

Fig. 5: Root-locus diagram for H,,_,(s) =

RSk

H'(©] = HD) (p + Tier s @2)
2
2 M -7 )
se—-1[\2 _ 2 Sk—1 4Ms
(1'1(1)1'[};1 5’;+1|) —(2P Y cp|) +2P 1 H(D) [T}, SlliT| 2cp+1+cp(p+2}g=1m)

The result (2.2) is sharp for the function given by

(2.2)
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s—1 s,—1
s+1 s +1
—1s—1
1-3
sk+1
s—1 s5,—-1
s—1 s+1 sk+1
1+
(s+1) s —1s-1
Sy t1ls+1

where s, S,,..., S, are positive real numbers.

Proof. Let f(z) be as in the proof of Theorem 1 and
by, b,,..., b, be the zeros of the function f(z) in D that are
different from zero.

The function

+1

k=1

-

H(s) =

H(1) p =246,
p+1

k=1

is analytic in D, and |B(z)| < 1 for z € D. By the
maximum principle, for each z € D, we have |f(2)| < |B(2)|.

Let

_f@
h(Z) = WZ)
This function is analytic in D and |k(z)| < 1 for z € D.
Therefore, we have
2P 7P 2p+1,p+l
va- et

207 2p+17p+1 n Z
[ZH(I) +cp a= ) + Cpi1 A=z +.. ]zp ITiz1

h) = — O

2? 2p*t
2P + Cpi1 A —2)pH Z+...

2p+1zp+1 n ) n 7z — bk )
. k=1 .
1—bz

Z)P + Cpy1 (I =2)p't
H (1) [Te=q byl

fo a-

(ZH(l) +c, (12 2

277 g |

[r(0)| =
and

2v1

1—|b,|?
, 2Cp+1 + Cp (P + E;cl=1 #)
] = HD [T bl

Moreover, it is obvious that

(c) C 1 bl
|B'(0)| = © P Ziic—b,P
and
cf'(e) . . . _¢cB(0)
o - [f@l=IB )= 5o’ °© € aD.
Consider the auxiliary function
Yy = 2A O
1 — h(0)A(z)

This function is analytic in the unit disc D, Y(0) =0,
[Y(2)| <1 for |z| <1 and [Y(c)|=1 for —1 =c € aD.
Therefore, from Schwarz lemma on the boundary for p = 1,
we obtain

; < | —1 | = L(O)lzlh’(_l)l
1+|r'o] ~ 11— Ayn(-1)|"
1+ |h(0)] ,
Ih(o)l{lf( D= 1B DI}
Also, it can be seen that
, 1—|h(0)|?
v = —— O
(1 - h(0)h(2))
and
— 2
2t |2Cp+1 + ¢ (P + ZQ=1%)|
S Al H(D [T, 1b]
Y(z) = 1— [h(0)]2 - 2p71|Cp| 2
- (H(l) H;clzllbk|>

|2Cp+1 to (p+2 _blbklz)
= 2p- 1H(1)1_[|b | k =
HW) [MTr_ybiD? = (2P7cy|)

Thus, we take
2

1 — |by|?
o o2 T
2

HD M=l biD? = (207, )

1 — by 2
11+ b2

1+ 2P H(D) [Tz 1 bel
27"’1|cp
H() [Ti=y
21’*1|cp

HD ITi-q b

1+

Byl IlH’(on ~

1_ H(1)

and
2 (HO Mo = (27, D)’

(HOD TTEealbD? = (27216, 1)* + 22 HOO TREalbid 26y +c, (p + B, 2L
_HOI 1 ihd
o) S+ b
Since
| -1
1—|b* sk+1 3 4Rs,
b, =1 7 5|2 +2i8s,— 1
sk +1
and
1- | -1 4Rs),
1_|bk|2_ Sp+1 _ |5k+1|2 _ RSy
|1+ by |? |1+ Se—1)° 4ls|? Iskl?
S+ 1 s, + 112

hence we get inequality (2.2). Now we shall show that
inequality (2.2) is sharp. Let

—b
1_Zp+1 n_ 4 k
H(1+Z)= Hk"ll kaH(l)
1-z 1+Zp+1l_[7’§:11 %
— bz
2
=(-1+ 5 H(1).
1+ 2z ]5, Z~ Dk
1 bz
Then
2 14z
(1—z)zH(:)
by +1§n =1l 1 z—by
((p+1)zpl'lk1 bz+z1’ v (1—b_kz)zn'"k3"1—52>

H(1)

(1 + 2 lz—_bi:z)
— b, b? 1
—2zP T Z k +14+ 71(
zP [Tk=1 _ka(P zZYk- 1(1 5 z)Z_bk
= H(1)
— b
14 zp+1R Z—_k
< Hk_ll_bkz)
and forz = -1
b 1= l> 1 )
—2(=1)? —k(p+1-3n 2
’ (Gbia | i +b (P Yk (1+bk.) —1—b,
H'(0) =2 > H(1)
1-b
14 (—1)p+t —k
( P T 1+bk.)
+ by [be]? 1
1P +1+ —
( )l_[ b< Ek1(1+b)1+bk
=4 3 H(D)
1+ b,
1—(=1)PH1TI™ _k
( Gy Hk—11+bk>

and since by, by, ..., b, are positive real numbers, we have

bZ
(- 1)p(P+1+Zk 1(1+bk) )
(=P
,n, we obtain

H'(0) =4

HQ.

Also, forp = 2,4,..

10
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n
, 1—by
[H'(0)] = H(1) <p +1 +kZ;1 - bk>'
Since by, = % we get
k

, &1
[H'(0)] = H(1) <p +14 zg>
k=1

On the other hand, we obtain
P 5P 2pP+1,p+1

H(1)+CP(1_Z)p +Cp+1(1_z)p+1 +

2P+ M., 4 _ﬁ(
1-b
={1- 2 HQ),
14 zP*1[IR_ —k
Micay = bz
+1 z—by
2P zp 2P+1,p+1 227" k= 1-— b_kZ
c +c +.== H(1
14 (1 — Z)p p+1 (1 _ Z)p+1 14 go+1 H;{’il 7z _ﬁ( ( )
T 1—byz
and
z— by
2P N op+ly, 2z[Tk= 1_ EZ HD
c c == .
P(1-2z)p P (1 — z)p+1 14 zv 1[I0, z _ﬁ‘
1 —byz

Passing to limit in the last equality yields c, = 0.
Similarly, using straightforward calculations, we get

cpr1 = g5 e by = 5 e S
Therefore, (2.2) holds.

The results obtained in the presented theorems can be
generalized by examining Schwarz lemma at the boundary for
distinct zeros other than s = 1, such as sy, s5, S3,-..., Sk-

A similar analysis which was carried out for Theorem 1
can also be performed for Theorem 2. Using the obtained
extremal function given in Theorem 2, following generic
transfer function is obtained:

bysP¥™ 4+ b,sPT2 4o bp+n+1s

H,(s) = p=246,...,n
a1517+n+1+a25p+n—1+...+ap+n+1+1’ O

2
where for H(1) is taken as equal to 1. The related block
diagram for H, is given in Fig. 6. In the figure, G,(s) and
T
G,(s) are given as Gy(s)=bTs and G,(s) = s%,
respectively, where

T T
a=|a; a; .. ap+n+1] ,b = [bl bz bp+n+1] y
2 2
and
s = [Sp+n gpin-2 S]T.

As an example, for p =2 and p =4 with n =1, the
obtained transfer functions are given, respectively, as follows:
(s; +3)s3+ (1 +3sy)s

s*+ (3+3s;)s2+ 54

Hp=2 ()=

and
Hyoa(s) = (5+s7)s°+ (10 + 10s;)s% + (1 + 551)5.
= s®+ (10 + 5s;)s* + (54 10s,)s? + 54
If we assume that s; = 1, these transfer functions become
4s® + 4s

H,_,(§) =———
p_Z() st +6s2+1

and
6s° +20s% + 65
Hp=t() = e oty 352 4 1
For these transfer functions, corresponding root-locus
diagrams are given in Figs. 7 and 8, respectively. According to

these figures, considered transfer functions define marginally
stable systems as in Theorem 1. Also, the figures show that

Hy(s) =

both transfer functions have a zero at infinity.

X(5)— G,(s) »¥(5)

G,(s)

Fig. 6. Block diagram representation of the transfer function

bySPT™ 4+ bysPT2 4ot bpinst
Y(S) 1 2 P 721

A _ )
X(s) a;sPHl 4 q,sPinl 4y Ap+n+1,
2

p=246,...,n

Root Locus E
064 .. 05

038 " 028 017 0085

08~

094

094 "

Imaginary Axis (semnds“)
3 o

.,\ T
. . s

.
)
1
N

) 064 057038 028 017 0085
3 25 2 15 [ 05 30
Real Axis (seccnds")
. . 4s3+4s
Fig. 7. Root-locus diagram for H,_,(s) = .
9 g p_Z( ) s*+6s2+1
Root Locus 4

N 0er .. .05 036 028
3tes. .

'Tm -

€ |og4.

8 11~

2

g0

<

=

@ -1

2 .

& |094

g

E-
-3p08 ) i .\\“\__ ) 3
. 06 .05 036 028 D T—0085y
"4 35 3 25 2 5 4 05 40

Real Axis (seconds™')

655+205%+65

Fig. 8. Root-locus diagram for H,,_,(s) = st

4, Conclusions

In this paper, a boundary analysis for transfer functions of
control theory has been carried out using Schwarz lemma. Two
theorems are presented with their proofs by assuming that H(s)
is analytic at the origin with H(0) = 0. In these two theorems,
lower boundaries for |H'(0)| have been obtained. The obtained
inequalities used in sharpness analysis to determine transfer
functions. Two unique transfer functions, H; (s) and H,(s), have
been obtained for two unique theorems. It is worth to note that
here the obtained transfer functions are not arbitrary but they are
the intuitive results of the proposed theorems. Therefore, these
functions have also been investigated in terms of root-locus
graphics. According to observed results, it is possible to
conclude that marginally stable systems are obtained using the
results of the proposed theorems.
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