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1. Introduction 

Positive real functions (PRFs) play an important role in 
electrical engineering. Although they are mainly used in 
network synthesis as driving point impedance functions 
(DPIFs) [1, 2], it is also possible to encounter PRFs in signal 
processing [3], control systems [4], and even in 
electromagnetic and microwave engineering [5]. Positive 
realness for the systems is frequently investigated in control 
theory literature [6, 7]. 

In [8], it is aimed to find output feedback 𝐾𝐾 to make the 
closed-loop system strictly positive real. It is also stated in the 
same study that the passivity is equivalent to positive realness 
for finite-dimensional linear time-invariant (LTI) systems. 

As another application of positive realness in modern 
control theory, Kalman-Yakubovich-Popov (KYP) lemma 
(also known as the positive real lemma) can be given. 

This lemma establishes the connection between the 
frequency domain, time domain, and state-space 
representation of the system [9]. 

In this study, we aim to investigate the boundary analysis 
of PRFs in control systems. 
This lemma establishes the connection between the frequency 
domain, time domain, and state-space representation of the 
system [9]. 

In this study, we aim to investigate the boundary analysis 
of PRFs in control systems. 

 
Accordingly, the derivative of the transfer function 𝐻𝐻(𝑠𝑠) is 

considered assuming that 𝐻𝐻(𝑠𝑠) is analytic at 𝑠𝑠 = 0 of the 
imaginary axis with 𝐻𝐻(0) = 0. Performing sharpness analysis of 
obtained inequalities, unique transfer functions and related block 
diagrams with root-locus graphics are presented as the results of 
the study. 

Before giving the preliminary considerations, the conditions 
for a transfer function to be qualified as positive real will be 
given. 

A transfer function is said to be positive real if it satisfies the 
following conditions [10]: 

i. 𝐻𝐻(𝑠𝑠) is analytic in ℜ𝑠𝑠 ≥ 0 except possibly for poles on the 
axis of imaginaries, 

ii. 𝐻𝐻(𝑠𝑠) = 𝐻𝐻(𝑠𝑠) 
iii. ℜ𝐻𝐻(𝑠𝑠) ≥ 0, in ℜ𝑠𝑠 ≥ 0 
The rest of the manuscript is organized as follows: In Section 

II, the preliminary considerations are given for the theorems to 
be discussed in the next section. In Section III, the main results 
and theorems are presented with explanatory examples and 
finally, conclusions are given in Section IV. 

2. Preliminary Considerations 

The well-known Schwarz’s Lemma, which is a consequence 
of the Maximum Principle, says that if 𝑓𝑓:𝐷𝐷 → 𝐷𝐷 is analytic with 
𝑓𝑓(𝑧𝑧) = 𝑐𝑐𝑝𝑝𝑧𝑧𝑝𝑝 + 𝑐𝑐𝑝𝑝+1𝑧𝑧𝑝𝑝+1 + ⋯. where 𝐷𝐷 = {𝑧𝑧: |𝑧𝑧| < 1then   
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|𝑓𝑓(𝑧𝑧)| ≤ |𝑧𝑧|𝑝𝑝, ∀𝑧𝑧 ∈ 𝐷𝐷   𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  �𝑐𝑐𝑝𝑝� ≤ 1. 

Moreover, if the equality |𝑓𝑓(𝑧𝑧)| = |𝑧𝑧|𝑝𝑝 holds for any 𝑧𝑧 ≠
0, or �𝑐𝑐𝑝𝑝� = 1 then 𝑓𝑓 is a rotation, that is, 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖, 𝜃𝜃 real 
[11]. 

Before applying Schwarz lemma, firstly, we will exploit 
the following map. Consider the product 

𝐵𝐵0(𝑧𝑧) = �
𝑧𝑧− 𝑏𝑏𝑘𝑘

1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛

𝑘𝑘=1

. 

The function 𝐵𝐵0(𝑧𝑧) is called a finite Blaschke product, 
where 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛 ∈ 𝐷𝐷. 

Let 

𝑓𝑓(𝑧𝑧) =
𝐻𝐻(1+𝑧𝑧1−𝑧𝑧)−𝐻𝐻(1)

𝐻𝐻(1+𝑧𝑧1−𝑧𝑧)+𝐻𝐻(1)
, 𝑧𝑧 = 𝑠𝑠−1

𝑠𝑠+1
,    (1.1) 

where  
𝐻𝐻(𝑠𝑠) = 𝐻𝐻(1) + 𝑐𝑐𝑝𝑝(𝑠𝑠 − 1)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1(𝑠𝑠 − 1)𝑝𝑝+1 + ⋯, 𝑝𝑝 > 1.  

Note that 𝐻𝐻(1) is real and positive. Here, 𝑓𝑓(𝑧𝑧) is an 
analytic function in 𝐷𝐷, 𝑓𝑓(0) = 0 and |𝑓𝑓(𝑧𝑧)| < 1 for |𝑧𝑧| < 1. 
Consider the function 

𝛷𝛷(𝑧𝑧) =
𝑓𝑓(𝑧𝑧)

∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

, 𝑏𝑏𝑘𝑘 =
𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

, 𝑘𝑘 = 1,2, . . ,𝑛𝑛. 

Here, s1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 are points in right half plane and 
𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛 are zeros of 𝑓𝑓(𝑧𝑧). Also, Φ(𝑧𝑧) is an analytic 
function in 𝐷𝐷, Φ(0) = 0 and |Φ(𝑧𝑧)| < 1 for 𝑧𝑧 ∈ 𝐷𝐷. Therefore, 
Φ(𝑧𝑧) satisfies the conditions of the Schwarz lemma. Thus, 
from the Schwarz lemma, we obtain  

𝛷𝛷(𝑧𝑧) =
𝑓𝑓(𝑧𝑧)

∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

=
𝐻𝐻(1 + 𝑧𝑧

1− 𝑧𝑧) − 𝐻𝐻(1)

𝐻𝐻(1 + 𝑧𝑧
1− 𝑧𝑧) + 𝐻𝐻(1)

1

∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

 

 

=
𝑐𝑐𝑝𝑝

2𝑝𝑝𝑧𝑧𝑝𝑝
(1 − 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1

2𝑝𝑝+1𝑧𝑧𝑝𝑝+1
(1− 𝑧𝑧)𝑝𝑝+1 +

2𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1 − 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1− 𝑧𝑧)𝑝𝑝+1 +

1

∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

, 

𝛷𝛷(𝑧𝑧)
𝑧𝑧𝑝𝑝

=
𝑐𝑐𝑝𝑝

2𝑝𝑝
(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1

2𝑝𝑝+1𝑧𝑧
(1− 𝑧𝑧)𝑝𝑝+1 +. . .

2𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1 − 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1 − 𝑧𝑧)𝑝𝑝+1 + . . .

1

∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

 

�𝑐𝑐𝑝𝑝� ≤
𝐻𝐻(1)
2𝑝𝑝−1

�|𝑏𝑏𝑘𝑘|
𝑛𝑛

𝑘𝑘=1

 

and 

�𝑐𝑐𝑝𝑝� ≤
𝐻𝐻(1)
2𝑝𝑝−1

��
𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1�

𝑛𝑛

𝑘𝑘=1

. 

This result is sharp with equality for the function  

𝐻𝐻(𝑠𝑠) =

⎝

⎜
⎜
⎜
⎜
⎛

−1 +
2

1 − �𝑠𝑠 − 1
𝑠𝑠 + 1�

𝑝𝑝
∏

𝑠𝑠 − 1
𝑠𝑠 + 1−

𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

1 − 𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

𝑠𝑠 − 1
𝑠𝑠 + 1

𝑛𝑛
𝑘𝑘=1

⎠

⎟
⎟
⎟
⎟
⎞

𝐻𝐻(1), 

 where it can be simplified as follows: 

𝐻𝐻(𝑠𝑠) =
1 + �𝑠𝑠 − 1

𝑠𝑠 + 1�
𝑝𝑝
∏ 𝑠𝑠 − 𝑠𝑠𝑘𝑘

𝑠𝑠 + 𝑠𝑠𝑘𝑘
𝑛𝑛
𝑘𝑘=1

1− �𝑠𝑠 − 1
𝑠𝑠 + 1�

𝑝𝑝
∏ 𝑠𝑠 − 𝑠𝑠𝑘𝑘

𝑠𝑠 + 𝑠𝑠𝑘𝑘
𝑛𝑛
𝑘𝑘=1

𝐻𝐻(1). 

For different values of 𝑝𝑝 and 𝑛𝑛, different transfer functions 
can be obtained. For simplicity, assume that 𝐻𝐻(1) = 1. Some 
examples are given below, respectively, for 𝑝𝑝 = 2 with 𝑛𝑛 = 1 
and 𝑝𝑝 = 3 with 𝑛𝑛 = 2 cases: 

𝐻𝐻𝑝𝑝=2,𝑛𝑛=1(𝑠𝑠) =
𝑠𝑠3 + (2𝑠𝑠1 + 1)𝑠𝑠
(2𝑠𝑠1 + 1)𝑠𝑠2 + 𝑠𝑠1

, 

and 

𝐻𝐻𝑝𝑝=2,𝑛𝑛=3(𝑠𝑠) =
𝑏𝑏1𝑠𝑠5 + 𝑏𝑏2𝑠𝑠3 + 𝑏𝑏3𝑠𝑠
𝑎𝑎1𝑠𝑠4 + 𝑎𝑎2𝑠𝑠2 + 𝑎𝑎3

, 

where 
 𝑏𝑏1 = 1,  
 𝑏𝑏2 = 2𝑠𝑠1 + 2𝑠𝑠2 + 2𝑠𝑠3 + 𝑠𝑠1𝑠𝑠2 + 𝑠𝑠1𝑠𝑠3 + 𝑠𝑠2𝑠𝑠3 + 1,  
 𝑏𝑏3 = 𝑠𝑠1𝑠𝑠2 + 𝑠𝑠1𝑠𝑠3 + 𝑠𝑠2𝑠𝑠3 + 2𝑠𝑠1𝑠𝑠2𝑠𝑠3,  
 𝑎𝑎1 = 𝑠𝑠1 + 𝑠𝑠2 + 𝑠𝑠3 + 2,  

𝑎𝑎2 = 2𝑠𝑠1𝑠𝑠2 + 2𝑠𝑠1𝑠𝑠3 + 2𝑠𝑠2𝑠𝑠3 + 𝑠𝑠1𝑠𝑠2𝑠𝑠3 + 𝑠𝑠1 + 𝑠𝑠2 + 𝑠𝑠3, 
 𝑎𝑎3 = 𝑠𝑠1𝑠𝑠2𝑠𝑠3. 

For simplicity, assume that 𝑠𝑠1 = 𝑠𝑠2 = 𝑠𝑠3 = 1. Then the 
transfer functions are given as 

𝐻𝐻𝑝𝑝=2,𝑛𝑛=1(𝑠𝑠) =
𝑠𝑠3 + 3𝑠𝑠
3𝑠𝑠2 + 1

, 

and 

𝐻𝐻𝑝𝑝=2,𝑛𝑛=3(𝑠𝑠) =
𝑠𝑠5 + 10𝑠𝑠3 + 5𝑠𝑠
5𝑠𝑠4 + 10𝑠𝑠2 + 1

. 

The corresponding root-locus diagrams for 𝐻𝐻𝑝𝑝=2,𝑛𝑛=1(𝑠𝑠) and 
𝐻𝐻𝑝𝑝=2,𝑛𝑛=3(𝑠𝑠) are given in Figs. 1 and 2, respectively. As it can be 
observed from the figures, the obtained transfer functions 
correspond to marginally stable systems. 

   

 
Fig. 1. Root-locus diagram for 𝐻𝐻𝑝𝑝=2,𝑛𝑛=3(𝑠𝑠) = 𝑠𝑠5+10𝑠𝑠3+5𝑠𝑠

5𝑠𝑠4+10𝑠𝑠2+1
 

 

Fig 2: Root-locus diagram for 𝐻𝐻𝑝𝑝=2,𝑛𝑛=1(𝑠𝑠) = 𝑠𝑠3+3𝑠𝑠
3𝑠𝑠2+1

. 

Since the area of applicability of Schwarz Lemma is quite 
wide, there exist many studies about it. Some of these studies is 
called the boundary version of Schwarz Lemma. An important 
result of Schwarz lemma was given by Osserman [12]. Also, it’s 
still a hot topic in the mathematics literature [13-15]. 

It is an elementary consequence of Schwarz lemma that if 𝑓𝑓 
extends continuously to some boundary point 𝑐𝑐 with |𝑐𝑐| = 1, 
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and if |𝑓𝑓(𝑐𝑐)| = 1 and 𝑓𝑓’(𝑐𝑐) exists, then �𝑓𝑓’(𝑐𝑐)� ≥ 1, which is 
known as the Schwarz lemma on the boundary. In [12], R. 
Osserman proposed the boundary refinement of the classical 
Schwarz lemma as follows: 

Let 𝑓𝑓:𝐷𝐷 → 𝐷𝐷 be an analytic function with 𝑓𝑓(𝑧𝑧) = 𝑐𝑐𝑝𝑝𝑧𝑧𝑝𝑝 +
𝑐𝑐𝑝𝑝+1𝑧𝑧𝑝𝑝+1 + ⋯, 𝑝𝑝 ≥ 1. Assume that there is a 𝑐𝑐 ∈ 𝜕𝜕𝐷𝐷 so that 𝑓𝑓 
extends continuously to 𝑐𝑐, |𝑓𝑓(𝑐𝑐)| = 1 and 𝑓𝑓’(𝑐𝑐) exists. Then 

|𝑓𝑓 ′(𝑐𝑐)| ≥ 𝑝𝑝 + 1−�𝑐𝑐𝑝𝑝�

1+�𝑐𝑐𝑝𝑝�
                    (1.2) 

 and for 𝑝𝑝 = 1,  

|𝑓𝑓 ′(𝑐𝑐)| ≥
2

1 + |𝑓𝑓 ′(0)|
 

 Inequality (1.2) is sharp, i. e., for 𝑐𝑐 = 1, equality occurs 
for the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 𝑧𝑧+𝛾𝛾

1+𝛾𝛾𝛾𝛾
, 𝛾𝛾 ∈ [0,1]. Inequality (1.2) 

and its generalizations have important applications in 
geometric theory of functions, and they are still hot topics in 
the mathematics literature [13-15]. 

3. Main Results 

In this section, boundary analysis results for the derivative 
of transfer function are presented. From the definition of 
PRFs, we can state that 𝐻𝐻(𝑠𝑠) is analytic and single valued on 
the right half of the s-plane. In Theorems 1 and 2 we establish 
lower bounds on the derivative of 𝐻𝐻(𝑠𝑠) for positive real 
functions with 𝐻𝐻(0) = 0. 

Theorem 2.1 Let 𝐻𝐻(𝑠𝑠) = 𝐻𝐻(1) + 𝑐𝑐𝑝𝑝(𝑠𝑠 − 1)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1(𝑠𝑠 −
1)𝑝𝑝+1 + ⋯, 𝑝𝑝 ≥ 2 be a positive real function that is also 
analytic at the point 𝑠𝑠 = 0 of the imaginary axis with 𝐻𝐻(0) =
0. Then 

|𝐻𝐻′(0)| ≥ 𝐻𝐻(1) �𝑝𝑝 + 2�𝐻𝐻(1)−2𝑝𝑝−1�𝑐𝑐𝑝𝑝��
2

(𝐻𝐻(1))2−�2𝑝𝑝−1�𝑐𝑐𝑝𝑝��
2
+2𝑝𝑝−1𝐻𝐻(1)�𝑝𝑝𝑐𝑐𝑝𝑝+2𝑐𝑐𝑝𝑝+1�

�. (2.1) 

The equality in (2.1) occurs for the function 

𝐻𝐻(𝑠𝑠) =
(𝑠𝑠 + 1)𝑝𝑝+1 + (𝑠𝑠 − 1)𝑝𝑝+1

(𝑠𝑠 + 1)𝑝𝑝+1 − (𝑠𝑠 − 1)𝑝𝑝+1
𝐻𝐻(1),    𝑝𝑝 = 2,4,6, . . . ,𝑛𝑛.

 Proof. Let 𝑟𝑟(𝑧𝑧) = 𝑧𝑧𝑝𝑝 , 𝑧𝑧 ∈ 𝐷𝐷 and 𝑓𝑓(𝑧𝑧) be the same as in 
(1.1). 𝑟𝑟(𝑧𝑧) is analytic in 𝐷𝐷 and |𝑟𝑟(𝑧𝑧)| < 1 for |𝑧𝑧| < 1. The 
maximum principle implies that for each 𝑧𝑧 ∈ 𝐷𝐷, we have 
|𝑓𝑓(𝑧𝑧)| ≤ |𝑟𝑟(𝑧𝑧)|. Thus,  

𝑚𝑚(𝑧𝑧) =
𝑓𝑓(𝑧𝑧)
𝑟𝑟(𝑧𝑧)

 is an analytic function in 𝐷𝐷 and |𝑚𝑚(𝑧𝑧)| < 1 for |𝑧𝑧| < 1. In 
particular, using Schwarz lemma, we take 

𝑚𝑚(𝑧𝑧) =
𝑓𝑓(𝑧𝑧)
𝑟𝑟(𝑧𝑧) =

𝐻𝐻(1 + 𝑧𝑧
1 − 𝑧𝑧) − 𝐻𝐻(1)

�𝐻𝐻(1 + 𝑧𝑧
1 − 𝑧𝑧) + 𝐻𝐻(1)� 𝑧𝑧𝑝𝑝

=
𝑐𝑐𝑝𝑝

2𝑝𝑝𝑧𝑧𝑝𝑝
(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1

2𝑝𝑝+1𝑧𝑧𝑝𝑝+1
(1 − 𝑧𝑧)𝑝𝑝+1 + . . .

�2𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1− 𝑧𝑧)𝑝𝑝+1 + . . . � 𝑧𝑧𝑝𝑝
 

=
𝑐𝑐𝑝𝑝

2𝑝𝑝
(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1

2𝑝𝑝+1
(1− 𝑧𝑧)𝑝𝑝+1 𝑧𝑧+. . .

2𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1− 𝑧𝑧)𝑝𝑝+1 + . . .
, 

|𝑚𝑚(0)| =
2𝑝𝑝−1

𝐻𝐻(1) �
𝑐𝑐𝑝𝑝� ≤ 1 

and 

|𝑚𝑚′(0)| =
2𝑝𝑝−1

𝐻𝐻(1) �
𝑝𝑝𝑐𝑐𝑝𝑝 + 2𝑐𝑐𝑝𝑝+1�. 

If |𝑚𝑚(0)| = 1 then by the maximum principle, we have 
𝑓𝑓(𝑧𝑧)
𝑟𝑟(𝑧𝑧)

= 𝑒𝑒𝑖𝑖𝑖𝑖, 𝜃𝜃 ∈ℛ, 𝑓𝑓(𝑧𝑧) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟(𝑧𝑧) = 𝑧𝑧𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖 and  

𝐻𝐻 �
1 + 𝑧𝑧
1 − 𝑧𝑧

� =
1 + 𝑧𝑧𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖

1 − 𝑧𝑧𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖
. 

Further we may assume  

𝐻𝐻 �
1 + 𝑧𝑧
1 − 𝑧𝑧

� ≢
1 + 𝑧𝑧𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖

1 − 𝑧𝑧𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖
, 

and thus |𝑚𝑚(0)| < 1. 

Therefore, we take |𝑚𝑚(0)| = 2𝑝𝑝−1

𝐻𝐻(1)
�𝑐𝑐𝑝𝑝� < 1. 

In addition, since the expression 𝑐𝑐𝑓𝑓
′(𝑐𝑐)

𝑓𝑓(𝑐𝑐)
 is a real number 

greater than or equal to 1 [16] and 𝐻𝐻(0) = 0 yields |𝑓𝑓(𝑐𝑐)| = 1, 
𝑐𝑐 = −1 ∈ 𝜕𝜕𝐷𝐷, we take 

𝑐𝑐𝑓𝑓 ′(𝑐𝑐)
𝑓𝑓(𝑐𝑐)

= �
𝑐𝑐𝑓𝑓 ′(𝑐𝑐)
𝑓𝑓(𝑐𝑐) �

= |𝑓𝑓 ′(𝑐𝑐)|. 

Also, since |𝑓𝑓(𝑧𝑧)| ≤ |𝑟𝑟(𝑧𝑧)|, we get 
1 − |𝑓𝑓(𝑧𝑧)|

1 − |𝑧𝑧| ≥
1− |𝑟𝑟(𝑧𝑧)|

1 − |𝑧𝑧| . 

Without loss of generality, passing to limit in the last 
inequality yields 

|𝑓𝑓 ′(𝑐𝑐)| ≥ |𝑟𝑟 ′(𝑐𝑐)|. 
Thus, we obtain 

𝑐𝑐𝑓𝑓 ′(𝑐𝑐)
𝑓𝑓(𝑐𝑐)

= |𝑓𝑓 ′(𝑐𝑐)| ≥ |𝑟𝑟 ′(𝑏𝑏)| =
𝑐𝑐𝑟𝑟 ′(𝑐𝑐)
𝑟𝑟(𝑐𝑐)

, 𝑐𝑐 ∈ 𝜕𝜕𝐷𝐷. 

The composite function 

𝛩𝛩(𝑧𝑧) =
𝑚𝑚(𝑧𝑧) −𝑚𝑚(0)

1 −𝑚𝑚(0)𝑚𝑚(𝑧𝑧)
 

satisfies the hypothesis of the Schwarz lemma on the 
boundary as shown below:  

 First, let us show that |Θ(𝑧𝑧)| < 1 for 𝑧𝑧 ∈ 𝐷𝐷. Since  
|𝑚𝑚(𝑧𝑧) −𝑚𝑚(0)|2 = |𝑚𝑚(𝑧𝑧)|2 −𝑚𝑚(𝑧𝑧)𝑚𝑚(0) −𝑚𝑚(0)𝑚𝑚(𝑧𝑧) + |𝑚𝑚(0)|2 

and 

�1 −𝑚𝑚(0)𝑚𝑚(𝑧𝑧)�
2

= 1−𝑚𝑚(0)𝑚𝑚(𝑧𝑧) −𝑚𝑚(𝑧𝑧)𝑚𝑚(0) + |𝑚𝑚(0)|2|𝑚𝑚(𝑧𝑧)|2, 

then  
|𝑚𝑚(𝑧𝑧) −𝑚𝑚(0)|2 − �1−𝑚𝑚(0)𝑚𝑚(𝑧𝑧)�

2
= −(1 − |𝑚𝑚(0)|2)(1− |𝑚𝑚(𝑧𝑧)|2) < 0. 

Therefore, we take  

|𝑚𝑚(𝑧𝑧) −𝑚𝑚(0)|2 < �1 −𝑚𝑚(0)𝑚𝑚(𝑧𝑧)�
2
 

and 
|𝛩𝛩(𝑧𝑧)| < 1. 

Second, we will prove that |𝛩𝛩(−1)| = 1 for 𝑐𝑐 = −1 ∈ 𝜕𝜕𝐷𝐷. 
Since 

𝛩𝛩(𝑧𝑧) =
𝑚𝑚(𝑧𝑧) −𝑚𝑚(0)

1−𝑚𝑚(0)𝑚𝑚(𝑧𝑧)
=

𝑚𝑚(𝑧𝑧) −𝑚𝑚(0)

𝑚𝑚(𝑧𝑧)� 𝑚𝑚(𝑧𝑧)
|𝑚𝑚(𝑧𝑧)|2 − 𝑚𝑚(0)�

 

and 

𝑚𝑚(𝑧𝑧) =
𝑓𝑓(𝑧𝑧)
𝑟𝑟(𝑧𝑧)

=
𝐻𝐻 �1 + 𝑧𝑧

1− 𝑧𝑧� − 𝐻𝐻(1)

�𝐻𝐻 �1 + 𝑧𝑧
1− 𝑧𝑧�+ 𝐻𝐻(1)� 𝑧𝑧𝑝𝑝

, 

then for 𝑐𝑐 = −1 ∈ 𝜕𝜕𝐷𝐷 and 𝐻𝐻(0) = 0 we take 
|𝑚𝑚(−1)| = 1. 

In this way, we get  
|𝛩𝛩(−1)| = 1. 

Thus, from (1.3), we obtain the estimate   
2

1 + |𝛩𝛩′(0)| ≤
|𝛩𝛩′(−1)| =

1− |𝑚𝑚(0)|2

�1−𝑚𝑚(0)𝑚𝑚(−1)�
2 |𝑚𝑚′(−1)| 

              ≤
1 + |𝑚𝑚(0)|
1 − |𝑚𝑚(0)| �

𝑓𝑓 ′(−1)
𝑟𝑟(−1)

−
𝑓𝑓(−1)𝑟𝑟′(−1)
𝑟𝑟2(−1) � 

=
1 + |𝑚𝑚(0)|
1 − |𝑚𝑚(0)| �

𝑓𝑓(−1)
(−1)𝑟𝑟(−1)� �

(−1)𝑓𝑓 ′(−1)
𝑓𝑓(−1)

−
(−1)𝑟𝑟 ′(−1)
𝑟𝑟(−1) � 

=
1 + |𝑚𝑚(0)|
1− |𝑚𝑚(0)|

(|𝑓𝑓 ′(−1)|− |𝑟𝑟 ′(−1)|) =
1 + |𝑚𝑚(0)|
1 − |𝑚𝑚(0)|

(|𝑓𝑓 ′(−1)|− 𝑝𝑝). 

 Since  
𝛩𝛩′(𝑧𝑧) = 1−|𝑚𝑚(0)|2

�1−𝑚𝑚(0)𝜑𝜑(𝑧𝑧)�
2 𝑚𝑚′(𝑧𝑧),  
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 |𝛩𝛩′(0)| = �𝑚𝑚′(0)�
1−|𝑚𝑚(0)|2

=
2𝑝𝑝−1�𝑝𝑝𝑐𝑐𝑝𝑝+2𝑐𝑐𝑝𝑝+1�

𝐻𝐻(1)

1−�
2𝑝𝑝−1�𝑐𝑐𝑝𝑝�
𝐻𝐻(1) �

2   

and  

 |𝑓𝑓 ′(−1)| = �𝐻𝐻′(0)�
𝐻𝐻(1)

,  

we obtain  
2

1 +𝐻𝐻(1)
2𝑝𝑝−1�𝑝𝑝𝑐𝑐𝑝𝑝 + 2𝑐𝑐𝑝𝑝+1�

(𝐻𝐻(1))2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��
2

≤
𝐻𝐻(1) + 2𝑝𝑝−1�𝑐𝑐𝑝𝑝�
𝐻𝐻(1) − 2𝑝𝑝−1�𝑐𝑐𝑝𝑝�

�
|𝐻𝐻′(0)|
𝐻𝐻(1)

− 𝑝𝑝�, 

2 ��𝐻𝐻(1)�
2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2�

�𝐻𝐻(1)�
2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2 + 2𝑝𝑝−1𝐻𝐻(1)�𝑝𝑝𝑐𝑐𝑝𝑝 + 2𝑐𝑐𝑝𝑝+1�

𝐻𝐻(1) − 2𝑝𝑝−1�𝑐𝑐𝑝𝑝�
𝐻𝐻(1) + 2𝑝𝑝−1�𝑐𝑐𝑝𝑝�

+ 𝑝𝑝 

≤
|𝐻𝐻′(0)|
𝐻𝐻(1)

 

and 

�𝐻𝐻′(0)� ≥ 𝐻𝐻(1)�𝑝𝑝 +
2�𝐻𝐻(1) − 2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2

(𝐻𝐻(1))2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��
2

+ 2𝑝𝑝−1𝐻𝐻(1)�𝑝𝑝𝑐𝑐𝑝𝑝 + 2𝑐𝑐𝑝𝑝+1�
�. 

 Therefore, we get the inequality (2.1). 
Now, we shall show that the inequality (2.1) is sharp. Let  

𝐻𝐻(𝑠𝑠) =
(𝑠𝑠 + 1)𝑝𝑝+1 + (𝑠𝑠 − 1)𝑝𝑝+1

(𝑠𝑠 + 1)𝑝𝑝+1 − (𝑠𝑠 − 1)𝑝𝑝+1
𝐻𝐻(1). 

Then 

𝐻𝐻′(𝑠𝑠) =
4(𝑝𝑝 + 1)(𝑠𝑠 − 1)𝑝𝑝(𝑠𝑠 + 1)𝑝𝑝

((𝑠𝑠 − 1)𝑝𝑝+1 − (𝑠𝑠 + 1)𝑝𝑝+1)2 𝐻𝐻(1) 

and 

𝐻𝐻′(0) =
4(𝑝𝑝 + 1)

|(−1)𝑝𝑝+1 − 1|2 𝐻𝐻(1). 

Therefore, for  𝑝𝑝 = 2,4,6, . . . ,𝑛𝑛, we obtain 
|𝐻𝐻′(0)| = (𝑝𝑝 + 1)𝐻𝐻(1). 

On the other hand, we obtain 

𝐻𝐻(1) + 𝑐𝑐𝑝𝑝(𝑠𝑠 − 1)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1(𝑠𝑠 − 1)𝑝𝑝+1+. . . =
(𝑠𝑠 + 1)𝑝𝑝+1 + (𝑠𝑠 − 1)𝑝𝑝+1

(𝑠𝑠 + 1)𝑝𝑝+1 − (𝑠𝑠 − 1)𝑝𝑝+1 𝐻𝐻(1), 

1 1
1

1 1 1

( 1) ( 1)( 1) ( 1) ... = 1 (1),
( 1) ( 1)

p p
p p

p p p p

s sc s c s H
s s

+ +
+

+ + +

 + + −
− + − + − + − −  𝑐𝑐𝑝𝑝(𝑠𝑠 −

1)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1(𝑠𝑠 − 1)𝑝𝑝+1+. . . = 2 (𝑠𝑠−1)𝑝𝑝+1

(𝑠𝑠+1)𝑝𝑝+1−(𝑠𝑠−1)𝑝𝑝+1
𝐻𝐻(1) 

and 

𝑐𝑐𝑝𝑝 + 𝑐𝑐𝑝𝑝+1(𝑠𝑠 − 1)+. . . = 2
(𝑠𝑠 − 1)

(𝑠𝑠 + 1)𝑝𝑝+1 + (𝑠𝑠 − 1)𝑝𝑝+1
𝐻𝐻(1). 

Passing to limit in the last equality yields 𝑐𝑐𝑝𝑝 = 0. 
Similarly, using straightforward calculations, we take 𝑐𝑐𝑝𝑝+1 =
1
2𝑝𝑝
𝐻𝐻(1). So, we take 

𝐻𝐻(1)�𝑝𝑝 +
2�𝐻𝐻(1) − 2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2

�𝐻𝐻(1)�
2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2 + 2𝑝𝑝−1𝐻𝐻(1)�𝑝𝑝𝑐𝑐𝑝𝑝 + 2𝑐𝑐𝑝𝑝+1�
� 

= (𝑝𝑝 + 1)𝐻𝐻(1). 
The extremal function can be considered as a transfer 

function of a certain control system. For simplicity, assume 
that 𝐻𝐻(1) = 1. Then, the extremal function obtained in 
Theorem 1 can be rewritten as  

𝐻𝐻(𝑠𝑠) =
(𝑠𝑠 + 1)𝑝𝑝+1 + (𝑠𝑠 − 1)𝑝𝑝+1

(𝑠𝑠 + 1)𝑝𝑝+1 − (𝑠𝑠 − 1)𝑝𝑝+1
,    𝑝𝑝 = 2,4,6, . . . ,𝑛𝑛. 

This transfer function can be implemented as a block as 
given in Figure 3. 

 

 
Fig. 3: Block diagram representation of the transfer function 𝐻𝐻(𝑠𝑠) =

(𝑠𝑠+1)𝑝𝑝+1+(𝑠𝑠−1)𝑝𝑝+1

(𝑠𝑠+1)𝑝𝑝+1−(𝑠𝑠−1)𝑝𝑝+1
,    𝑝𝑝 = 2,4,6, . . . ,𝑛𝑛. 

As exemplary applications, 𝑝𝑝 = 2 and 𝑝𝑝 = 4 cases have been 
considered. The corresponding transfer functions are given 
respectively as follows:  

𝐻𝐻𝑝𝑝=2(𝑠𝑠) =
𝑠𝑠3 + 3𝑠𝑠
3𝑠𝑠2 + 1

 

𝐻𝐻𝑝𝑝=4(𝑠𝑠) = 𝑠𝑠5+10𝑠𝑠3+5𝑠𝑠
5𝑠𝑠4+10𝑠𝑠2+1

, 

where related root locus diagrams are given in Figs. 4 and 5, 
respectively. As it can be seen from the figures, both transfer 
functions belong to marginally stable systems as all the poles are 
located on the imaginary axis. 

 
Fig. 4. Root-locus diagram for 𝐻𝐻𝑝𝑝=2(𝑠𝑠) = 𝑠𝑠3+3𝑠𝑠

3𝑠𝑠2+1
. 

 
Fig. 5: Root-locus diagram for 𝐻𝐻𝑝𝑝=4(𝑠𝑠) = 𝑠𝑠5+10𝑠𝑠3+5𝑠𝑠

5𝑠𝑠4+10𝑠𝑠2+1
. 

Theorem 2.2 Let 𝐻𝐻(𝑠𝑠) = 𝐻𝐻(1) + 𝑐𝑐𝑝𝑝(𝑠𝑠 − 1)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1(𝑠𝑠 −
1)𝑝𝑝+1+. . ., 𝑝𝑝 ≥ 2 be a positive real function that is also an 
analytic at the point 𝑠𝑠 = 0 of the imaginary axis with 𝐻𝐻(0) = 0. 
Assume that 𝑠𝑠1, 𝑠𝑠2, . . . , 𝑠𝑠𝑛𝑛 are points in the right half plane that 
are different from one with 𝐻𝐻(𝑠𝑠𝑘𝑘) = 𝐻𝐻(1), 𝑘𝑘 = 1,2, . . . ,𝑛𝑛. Then 
we have the inequality (2.2). 

|𝐻𝐻′(0)| ≥ 𝐻𝐻(1) �𝑝𝑝 + ∑ ℜ𝑠𝑠𝑘𝑘
|𝑠𝑠𝑘𝑘|2

𝑛𝑛
𝑘𝑘=1                                                            (2.2) 

+
2�𝐻𝐻(1)∏ �𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘+1

�𝑛𝑛
𝑘𝑘=1 −�2𝑝𝑝−1�𝑐𝑐𝑝𝑝���

2

�𝐻𝐻(1)∏ �𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘+1
�𝑛𝑛

𝑘𝑘=1 �
2
−�2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2
+2𝑝𝑝−1𝐻𝐻(1)∏ �𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘+1

�𝑛𝑛
𝑘𝑘=1 �2𝑐𝑐𝑝𝑝+1+𝑐𝑐𝑝𝑝�𝑝𝑝+∑

4ℜ𝑠𝑠𝑘𝑘
�𝑠𝑠𝑘𝑘�

2+2𝑖𝑖ℑ𝑠𝑠𝑘𝑘−1
𝑛𝑛
𝑘𝑘=1 ��

� (2.2)  

The result (2.2) is sharp for the function given by 
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𝐻𝐻(𝑠𝑠) =

1− �𝑠𝑠 − 1
𝑠𝑠 + 1�

𝑝𝑝+1
∏

𝑠𝑠 − 1
𝑠𝑠 + 1 −

𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

1 − 𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

𝑠𝑠 − 1
𝑠𝑠 + 1

𝑛𝑛
𝑘𝑘=1

1 + �𝑠𝑠 − 1
𝑠𝑠 + 1�

𝑝𝑝+1
∏

𝑠𝑠 − 1
𝑠𝑠 + 1 −

𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

1 − 𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

𝑠𝑠 − 1
𝑠𝑠 + 1

𝑛𝑛
𝑘𝑘=1

𝐻𝐻(1),    𝑝𝑝 = 2,4,6, . . ., 

where 𝑠𝑠1, 𝑠𝑠2, . . . , 𝑠𝑠𝑛𝑛 are positive real numbers. 
Proof. Let 𝑓𝑓(𝑧𝑧) be as in the proof of Theorem 1 and 

𝑏𝑏1, 𝑏𝑏2, . . . , 𝑏𝑏𝑛𝑛 be the zeros of the function 𝑓𝑓(𝑧𝑧) in 𝐷𝐷 that are 
different from zero. 

The function 

𝐵𝐵(𝑧𝑧) = 𝑧𝑧𝑝𝑝�
𝑧𝑧 − 𝑏𝑏𝑘𝑘

1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛

𝑘𝑘=1

 

is analytic in 𝐷𝐷, and |𝐵𝐵(𝑧𝑧)| < 1 for 𝑧𝑧 ∈ 𝐷𝐷. By the 
maximum principle, for each 𝑧𝑧 ∈ 𝐷𝐷, we have |𝑓𝑓(𝑧𝑧)| ≤ |𝐵𝐵(𝑧𝑧)|. 

Let  

ℎ(𝑧𝑧) =
𝑓𝑓(𝑧𝑧)
𝐵𝐵(𝑧𝑧)

. 

 This function is analytic in 𝐷𝐷 and |ℎ(𝑧𝑧)| ≤ 1 for 𝑧𝑧 ∈ 𝐷𝐷. 
Therefore, we have  

ℎ(𝑧𝑧) =
𝑐𝑐𝑝𝑝

2𝑝𝑝𝑧𝑧𝑝𝑝
(1 − 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1

2𝑝𝑝+1𝑧𝑧𝑝𝑝+1
(1 − 𝑧𝑧)𝑝𝑝+1 +. . .

�2𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1 − 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1 − 𝑧𝑧)𝑝𝑝+1 +. . . � 𝑧𝑧𝑝𝑝 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

         (1) 

=
𝑐𝑐𝑝𝑝

2𝑝𝑝
(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1

2𝑝𝑝+1
(1− 𝑧𝑧)𝑝𝑝+1 𝑧𝑧+. . .

�2𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1 − 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1 − 𝑧𝑧)𝑝𝑝+1 +. . . �∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

, 

|ℎ(0)| =
2𝑝𝑝−1�𝑐𝑐𝑝𝑝�

𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1

 

and 

�ℎ′(0)� =
2𝑝𝑝−1 �2𝑐𝑐𝑝𝑝+1 + 𝑐𝑐𝑝𝑝 �𝑝𝑝 +∑ 1− |𝑏𝑏𝑘𝑘|2

𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 ��

𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1

. 

Moreover, it is obvious that 

|𝐵𝐵′(𝑐𝑐)| =
𝑐𝑐𝐵𝐵′(𝑐𝑐)
𝐵𝐵(𝑐𝑐)

= 𝑝𝑝 + �
1 − |𝑏𝑏𝑘𝑘|2

|𝑐𝑐 − 𝑏𝑏𝑘𝑘|2

𝑛𝑛

𝑘𝑘=1

 

and 
𝑐𝑐𝑓𝑓 ′(𝑐𝑐)
𝑓𝑓(𝑐𝑐)

= |𝑓𝑓 ′(𝑐𝑐)| ≥ |𝐵𝐵′(𝑐𝑐)| =
𝑐𝑐𝐵𝐵′(𝑐𝑐)
𝐵𝐵(𝑐𝑐)

, 𝑐𝑐 ∈ 𝜕𝜕𝐷𝐷. 

Consider the auxiliary function 

ϒ(𝑧𝑧) =
ℎ(𝑧𝑧) − ℎ(0)

1 − ℎ(0)ℎ(𝑧𝑧)
. 

This function is analytic in the unit disc 𝐷𝐷, ϒ(0) = 0, 
|ϒ(𝑧𝑧)| < 1 for |𝑧𝑧| < 1 and |ϒ(𝑐𝑐)| = 1 for −1 = 𝑐𝑐 ∈ 𝜕𝜕𝐷𝐷. 
Therefore, from Schwarz lemma on the boundary for 𝑝𝑝 = 1, 
we obtain 

2
1 + �ϒ′(0)�

≤ �ϒ′(−1)� =
1− |ℎ(0)|2

�1− ℎ(0)ℎ(−1)�
2 �ℎ

′(−1)� 

≤
1 + |ℎ(0)|
1 − |ℎ(0)|

{|𝑓𝑓 ′(−1)|− |𝐵𝐵′(−1)|}. 

Also, it can be seen that 

ϒ′(𝑧𝑧) =
1 − |ℎ(0)|2

�1 − ℎ(0)ℎ(𝑧𝑧)�
2 ℎ

′(𝑧𝑧) 

and 

ϒ′(𝑧𝑧) =
�ℎ′(0)�

1 − |ℎ(0)|2 =

2𝑝𝑝−1 �2𝑐𝑐𝑝𝑝+1 + 𝑐𝑐𝑝𝑝 �𝑝𝑝 + ∑ 1 − |𝑏𝑏𝑘𝑘|2
𝑏𝑏𝑘𝑘

𝑛𝑛
𝑘𝑘=1 ��

𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1

1− �
2𝑝𝑝−1�𝑐𝑐𝑝𝑝�

𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1

�
2  

= 2𝑝𝑝−1𝐻𝐻(1)�|𝑏𝑏𝑘𝑘|
�2𝑐𝑐𝑝𝑝+1 + 𝑐𝑐𝑝𝑝 �𝑝𝑝 + ∑ 1 − |𝑏𝑏𝑘𝑘|2

𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 ��

(𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1 )2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2

𝑛𝑛

𝑘𝑘=1

. 

Thus, we take 
2

1 + 2𝑝𝑝−1𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|
�2𝑐𝑐𝑝𝑝+1 + 𝑐𝑐𝑝𝑝 �𝑝𝑝 + ∑ 1 − |𝑏𝑏𝑘𝑘|2

𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 ��

(𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1 )2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2
𝑛𝑛
𝑘𝑘=1

 

≤
1 +

2𝑝𝑝−1�𝑐𝑐𝑝𝑝�
𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛

𝑘𝑘=1

1 −
2𝑝𝑝−1�𝑐𝑐𝑝𝑝�

𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1

�
|𝐻𝐻′(0)|
𝐻𝐻(1)

− 𝑝𝑝 −�
1 − |𝑏𝑏𝑘𝑘|2

|1 + 𝑏𝑏𝑘𝑘|2

𝑛𝑛

𝑘𝑘=1

� 

and 
2 �𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛

𝑘𝑘=1 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝���
2

(𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛
𝑘𝑘=1 )2 − �2𝑝𝑝−1�𝑐𝑐𝑝𝑝��

2
+ 2𝑝𝑝−1𝐻𝐻(1)∏ |𝑏𝑏𝑘𝑘|𝑛𝑛

𝑘𝑘=1 �2𝑐𝑐𝑝𝑝+1 + 𝑐𝑐𝑝𝑝 �𝑝𝑝 + ∑ 1 − |𝑏𝑏𝑘𝑘|2
𝑏𝑏𝑘𝑘

𝑛𝑛
𝑘𝑘=1 ��

 

≤
|𝐻𝐻′(0)|
𝐻𝐻(1) − 𝑝𝑝 −�

1− |𝑏𝑏𝑘𝑘|2

|1 + 𝑏𝑏𝑘𝑘|2

𝑛𝑛

𝑘𝑘=1

. 

Since 

1 − |𝑏𝑏𝑘𝑘|2

𝑏𝑏𝑘𝑘
=

1 − �𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1�

2

𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1

=
4ℜ𝑠𝑠𝑘𝑘

|𝑠𝑠𝑘𝑘|2 + 2𝑖𝑖ℑ𝑠𝑠𝑘𝑘 − 1
 

and 

1 − |𝑏𝑏𝑘𝑘|2

|1 + 𝑏𝑏𝑘𝑘|2 =
1 − �𝑠𝑠𝑘𝑘 − 1

𝑠𝑠𝑘𝑘 + 1�
2

�1 + 𝑠𝑠𝑘𝑘 − 1
𝑠𝑠𝑘𝑘 + 1�

2 =

4ℜ𝑠𝑠𝑘𝑘
|𝑠𝑠𝑘𝑘 + 1|2

4|𝑠𝑠𝑘𝑘|2
|𝑠𝑠𝑘𝑘 + 1|2

=
ℜ𝑠𝑠𝑘𝑘
|𝑠𝑠𝑘𝑘|2 

hence we get inequality (2.2). Now we shall show that 
inequality (2.2) is sharp. Let 

𝐻𝐻 �
1 + 𝑧𝑧
1− 𝑧𝑧

� =
1 − 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘

1 − 𝑏𝑏𝑘𝑘𝑧𝑧
𝑛𝑛
𝑘𝑘=1

1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

𝐻𝐻(1) 

=

⎝

⎛−1 +
2

1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1 ⎠

⎞𝐻𝐻(1). 

Then 
2

(1− 𝑧𝑧)2 𝐻𝐻
′ �

1 + 𝑧𝑧
1− 𝑧𝑧� 

=

−2�(𝑝𝑝 + 1)𝑧𝑧𝑝𝑝 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1 + 𝑧𝑧𝑝𝑝+1 ∑ 1 − |𝑏𝑏𝑘𝑘|2

�1− 𝑏𝑏𝑘𝑘𝑧𝑧�
2

𝑛𝑛
𝑘𝑘=1 ∏ 𝑧𝑧 − 𝑏𝑏𝑚𝑚

1 − 𝑏𝑏𝑚𝑚𝑧𝑧
𝑛𝑛
𝑚𝑚 =1
𝑘𝑘≠𝑚𝑚

�

�1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1 �

2 𝐻𝐻(1) 

=
−2𝑧𝑧𝑝𝑝 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘

1− 𝑏𝑏𝑘𝑘𝑧𝑧
𝑛𝑛
𝑘𝑘=1 �𝑝𝑝 + 1 + 𝑧𝑧 ∑ 1 − |𝑏𝑏𝑘𝑘|2

�1 − 𝑏𝑏𝑘𝑘𝑧𝑧�
1

𝑧𝑧 − 𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

�1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1 �

2 𝐻𝐻(1) 

and for 𝑧𝑧 = −1 

𝐻𝐻′(0) = 2
−2(−1)𝑝𝑝 ∏ −1− 𝑏𝑏𝑘𝑘

1 + 𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �𝑝𝑝 + 1− ∑ 1− |𝑏𝑏𝑘𝑘|2

�1 + 𝑏𝑏𝑘𝑘�
1

−1− 𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

�1 + (−1)𝑝𝑝+1 ∏ −1− 𝑏𝑏𝑘𝑘
1 + 𝑏𝑏𝑘𝑘

𝑛𝑛
𝑘𝑘=1 �

2 𝐻𝐻(1) 

= 4
(−1)𝑝𝑝 ∏ 1 + 𝑏𝑏𝑘𝑘

1 + 𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �𝑝𝑝 + 1 + ∑ 1 − |𝑏𝑏𝑘𝑘|2

�1 + 𝑏𝑏𝑘𝑘�
1

1 + 𝑏𝑏𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

�1 − (−1)𝑝𝑝+1 ∏ 1 + 𝑏𝑏𝑘𝑘
1 + 𝑏𝑏𝑘𝑘

𝑛𝑛
𝑘𝑘=1 �

2 𝐻𝐻(1) 

and since 𝑏𝑏1, 𝑏𝑏2, . . . , 𝑏𝑏𝑛𝑛 are positive real numbers, we have 

𝐻𝐻′(0) = 4
(−1)𝑝𝑝 �𝑝𝑝 + 1 +∑ 1 − 𝑏𝑏𝑘𝑘2

(1 + 𝑏𝑏𝑘𝑘)2
𝑛𝑛
𝑘𝑘=1 �

(1 − (−1)𝑝𝑝+1)2 𝐻𝐻(1). 

Also, for 𝑝𝑝 = 2,4, . . ,𝑛𝑛, we obtain 
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|𝐻𝐻′(0)| = 𝐻𝐻(1)�𝑝𝑝 + 1 +�
1 − 𝑏𝑏𝑘𝑘
1 + 𝑏𝑏𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�. 

Since 𝑏𝑏𝑘𝑘 = 𝑠𝑠𝑘𝑘−1
𝑠𝑠𝑘𝑘+1

, we get 

|𝐻𝐻′(0)| = 𝐻𝐻(1)�𝑝𝑝 + 1 + �
1
𝑠𝑠𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�. 

On the other hand, we obtain 

𝐻𝐻(1) + 𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1− 𝑧𝑧)𝑝𝑝+1 + … 

=

⎝

⎛1−
2𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘

1 − 𝑏𝑏𝑘𝑘𝑧𝑧
𝑛𝑛
𝑘𝑘=1

1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1 ⎠

⎞𝐻𝐻(1), 

𝑐𝑐𝑝𝑝
2𝑝𝑝𝑧𝑧𝑝𝑝

(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧𝑝𝑝+1

(1− 𝑧𝑧)𝑝𝑝+1 +. . . = −
2𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘

1 − 𝑏𝑏𝑘𝑘𝑧𝑧
𝑛𝑛
𝑘𝑘=1

1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1− 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

𝐻𝐻(1) 

and 

𝑐𝑐𝑝𝑝
2𝑝𝑝

(1− 𝑧𝑧)𝑝𝑝 + 𝑐𝑐𝑝𝑝+1
2𝑝𝑝+1𝑧𝑧

(1− 𝑧𝑧)𝑝𝑝+1 + . . . = −
2𝑧𝑧∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘

1 − 𝑏𝑏𝑘𝑘𝑧𝑧
𝑛𝑛
𝑘𝑘=1

1 + 𝑧𝑧𝑝𝑝+1 ∏ 𝑧𝑧 − 𝑏𝑏𝑘𝑘
1 − 𝑏𝑏𝑘𝑘𝑧𝑧

𝑛𝑛
𝑘𝑘=1

𝐻𝐻(1). 

Passing to limit in the last equality yields 𝑐𝑐𝑝𝑝 = 0. 
Similarly, using straightforward calculations, we get  

𝑐𝑐𝑝𝑝+1 = 1
2𝑝𝑝
∏ 𝑏𝑏𝑘𝑘𝑛𝑛
𝑘𝑘=1 = 1

2𝑝𝑝
∏ 𝑠𝑠𝑘𝑘−1

𝑠𝑠𝑘𝑘+1
𝑛𝑛
𝑘𝑘=1 . 

Therefore, (2.2) holds.  
The results obtained in the presented theorems can be 

generalized by examining Schwarz lemma at the boundary for 
distinct zeros other than 𝑠𝑠 = 1, such as 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3,..., 𝑠𝑠𝑘𝑘. 

A similar analysis which was carried out for Theorem 1 
can also be performed for Theorem 2. Using the obtained 
extremal function given in Theorem 2, following generic 
transfer function is obtained: 

𝐻𝐻2(𝑠𝑠) =
𝑏𝑏1𝑠𝑠𝑝𝑝+𝑛𝑛 + 𝑏𝑏2𝑠𝑠𝑝𝑝+𝑛𝑛−2 +⋯+ 𝑏𝑏𝑝𝑝+𝑛𝑛+1

2 𝑠𝑠

𝑎𝑎1𝑠𝑠𝑝𝑝+𝑛𝑛+1 + 𝑎𝑎2𝑠𝑠𝑝𝑝+𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑝𝑝+𝑛𝑛+1
2 +1

,    𝑝𝑝 = 2,4,6, . . . ,𝑛𝑛. 

 where for 𝐻𝐻(1) is taken as equal to 1. The related block 
diagram for 𝐻𝐻2 is given in Fig. 6. In the figure, 𝐺𝐺1(𝑠𝑠) and 
𝐺𝐺2(𝑠𝑠) are given as 𝐺𝐺1(𝑠𝑠) = 𝑏𝑏𝑇𝑇𝑠𝑠 and 𝐺𝐺2(𝑠𝑠) = 𝑠𝑠 𝑎𝑎

𝑇𝑇𝑠𝑠
𝑏𝑏𝑇𝑇𝑠𝑠

, 
respectively, where  

𝑎𝑎 = �𝑎𝑎1 𝑎𝑎2  … 𝑎𝑎𝑝𝑝+𝑛𝑛+1
2
�
𝑇𝑇
,𝑏𝑏 = �𝑏𝑏1 𝑏𝑏2  … 𝑏𝑏𝑝𝑝+𝑛𝑛+1

2
�
𝑇𝑇
,  

and  
𝑠𝑠 = [𝑠𝑠𝑝𝑝+𝑛𝑛 𝑠𝑠𝑝𝑝+𝑛𝑛−2  …  𝑠𝑠]𝑇𝑇. 
As an example, for 𝑝𝑝 = 2 and 𝑝𝑝 = 4 with 𝑛𝑛 = 1, the 

obtained transfer functions are given, respectively, as follows: 

𝐻𝐻𝑝𝑝=2(𝑠𝑠) =
(𝑠𝑠1 + 3)𝑠𝑠3 + (1 + 3𝑠𝑠1)𝑠𝑠
𝑠𝑠4 + (3 + 3𝑠𝑠1)𝑠𝑠2 + 𝑠𝑠1

 

and 

𝐻𝐻𝑝𝑝=4(𝑠𝑠) =
(5 + 𝑠𝑠1)𝑠𝑠5 + (10 + 10𝑠𝑠1)𝑠𝑠3 + (1 + 5𝑠𝑠1)𝑠𝑠
𝑠𝑠6 + (10 + 5𝑠𝑠1)𝑠𝑠4 + (5 + 10𝑠𝑠1)𝑠𝑠2 + 𝑠𝑠1

. 

If we assume that 𝑠𝑠1 = 1, these transfer functions become 

𝐻𝐻𝑝𝑝=2(𝑠𝑠) =
4𝑠𝑠3 + 4𝑠𝑠

𝑠𝑠4 + 6𝑠𝑠2 + 1
 

and 

𝐻𝐻𝑝𝑝=4(𝑠𝑠) =
6𝑠𝑠5 + 20𝑠𝑠3 + 6𝑠𝑠

𝑠𝑠6 + 15𝑠𝑠4 + 15𝑠𝑠2 + 1
. 

 For these transfer functions, corresponding root-locus 
diagrams are given in Figs. 7 and 8, respectively. According to 
these figures, considered transfer functions define marginally 
stable systems as in Theorem 1. Also, the figures show that 

both transfer functions have a zero at infinity. 

 
Fig. 6. Block diagram representation of the transfer function  

𝐻𝐻2(𝑠𝑠) =
𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠) =

𝑏𝑏1𝑠𝑠𝑝𝑝+𝑛𝑛 + 𝑏𝑏2𝑠𝑠𝑝𝑝+𝑛𝑛−2 + ⋯+ 𝑏𝑏𝑝𝑝+𝑛𝑛+1
2 𝑠𝑠

𝑎𝑎1𝑠𝑠𝑝𝑝+𝑛𝑛+1 + 𝑎𝑎2𝑠𝑠𝑝𝑝+𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑝𝑝+𝑛𝑛+1
2 +1

, 𝑝𝑝 = 2,4,6, . . . ,𝑛𝑛. 

 
Fig. 7. Root-locus diagram for 𝐻𝐻𝑝𝑝=2(𝑠𝑠) = 4𝑠𝑠3+4𝑠𝑠

𝑠𝑠4+6𝑠𝑠2+1
. 

 
Fig. 8. Root-locus diagram for 𝐻𝐻𝑝𝑝=4(𝑠𝑠) = 6𝑠𝑠5+20𝑠𝑠3+6𝑠𝑠

𝑠𝑠6+15𝑠𝑠4+15𝑠𝑠2+1
. 

4. Conclusions 

In this paper, a boundary analysis for transfer functions of 
control theory has been carried out using Schwarz lemma. Two 
theorems are presented with their proofs by assuming that 𝐻𝐻(𝑠𝑠) 
is analytic at the origin with 𝐻𝐻(0) = 0. In these two theorems, 
lower boundaries for |𝐻𝐻′(0)| have been obtained. The obtained 
inequalities used in sharpness analysis to determine transfer 
functions. Two unique transfer functions, 𝐻𝐻1(𝑠𝑠) and 𝐻𝐻2(𝑠𝑠), have 
been obtained for two unique theorems. It is worth to note that 
here the obtained transfer functions are not arbitrary but they are 
the intuitive results of the proposed theorems. Therefore, these 
functions have also been investigated in terms of root-locus 
graphics. According to observed results, it is possible to 
conclude that marginally stable systems are obtained using the 
results of the proposed theorems. 
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