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Underwater wireless optical communication systems face significant challenges due to the 
heterogeneous nature of the underwater environment and the attenuation of optical signals caused by 
absorption and scattering. These effects restrict the data transfer capacity and transmission distance, 
resulting in communication errors. Different modulation techniques are used to minimize the effects 
of these parameters. Automatic modulation classification plays a critical role in terms of effective 
management of spectrum resources. In this study, underwater wireless optical communication channels 
are modulated with different modulation techniques, and the signals are transformed into the discrete 
wavelet space, resulting in approximation and detail coefficients that are used as feature vectors for 
training machine learning algorithms. In addition, optimized classification features are determined for 
different signal-to-noise ratios and different transmission distances using the genetic algorithm. The 
results show that the approximation and detail coefficient energies provide higher classification 
performance in the classification of modulated signals according to statistical features such as mean, 
variance, and standard deviation. According to simulation results, an average classification accuracy 
of 82% has been obtained using the proposed discrete wavelet transform and genetic algorithm-based 
technique, which demonstrates high classification accuracy for noisy underwater channels. 
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1. Introduction 

Underwater wireless communication (UWC) has become an 
urgent need for the effective use of underwater resources [1]. 
Underwater area security and surveillance, exploration of oil 
fields, monitoring underwater environment and pollution are the 
leading ones [2]. Acoustic and radio signals and optical 
communication technologies are the main techniques used for 
underwater wireless communication [3]. Systems which use 
acoustic signals are effective in terms of being resistant to the 
heterogeneous structure of the underwater habitat and suitable 
for communication over long distances [3]. On the other hand, 
these systems cannot come with an effective solution to today's 
communication needs due to their narrow bandwidth, low data 
transmission speed and high energy requirements[4]. 
Underwater electromagnetic (EM) wave propagation is more 
resistant to polluted water conditions and the heterogeneous 
structure of the underwater habitat than both acoustic and optical 
signals. In addition, data transmission systems based on EM 
signals are not adversely affected by ambient noise and 
underwater climate conditions compared to the mentioned 
methods [5]. However, the propagation of EM waves in the 
channel requires the elimination of specific difficult conditions 
since the relative permittivity and electrical conductivity of 
water are higher than air [6]. As an alternative to the EM and 
acoustic systems, underwater wireless optical communication 

(UWOC) attracts attention in terms of providing high data 
transmission speed, sufficient bandwidth, and being low-cost 
system [7]. In addition, UWOC systems have significant 
advantages including low latency and immunity to 
electromagnetic interference. UWOC is performed using the 
visible light band of the spectrum ranging from 380 nm to 750 
nm.  

Coastal and ocean waters have diverse intrinsic physio-chemical 
biological environments that cause various propagation 
phenomena [8]. Therefore, in UWOC communication, the 
absorption of light by water itself, and scattering of light by 
suspended particles and plankton are two important elements 
affecting signal propagation [8]. The optical properties arising 
from the nature of light include the absorption and scattering 
coefficients, the attenuation coefficient—which is defined as the 
sum of these two coefficients—and the volumetric scattering 
function [9]. The absorption and scattering effects lead to a 
decrease in the number of photons received by the end-devices, 
causing inter-symbol interference (ISI) and energy loss [10]. 

In this study, 5 modulation signals having different 
characteristics are generated considering an underwater channel 
model based on Beer-Lambert law. As a novel approach to 
underwater modulation classification problem, Discrete 
Wavelet Transform (DWT) and Genetic Algorithm (GA) have 
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been combined where DWT has been utilized for feature 
extraction and Genetic Algorithm (GA) has been used for 
optimized feature selection. The classification is performed via 
K Nearest Neighborhood Algorithm using the optimized 
features. We achieved 82% average classification accuracy 
across five modulation techniques (OOK, PPM, QAM, QPSK, 
SIM) under challenging underwater conditions.  

2. Materials and Method 

2.1. Proposed Scheme 

The two important processes that cause attenuation are 
absorption and scattering. In UWOC, the attenuation coefficient, 
expressed as the sum of the absorption and scattering 
coefficients, is formulated as follows [11]: 

𝑐𝑐(𝜆𝜆) = 𝑎𝑎(𝜆𝜆) + 𝑏𝑏(𝜆𝜆)                       (1) 

Here, the terms a(λ), b(λ), and c(λ) represent the absorption, 
scattering, and attenuation coefficients for the λ wavelength, 
respectively. Underwater optical propagation channel does not 
exhibit steady channel-characteristics due to pollution, salinity, 
temperature, concentration of suspended particles, and 
heterogeneous distribution of sunlight. As a result, it causes the 
absorption and scattering coefficients to change depending on 
the properties of the water. In the literature, for simulation of 
underwater optical communication systems, the channels are 
divided into 4 classes, namely sea, clear ocean, coastal ocean, 
and turbid harbor water [12]. The absorption and scattering 
coefficients for different water types are listed in Table 1 [13]. 

Table 1. Absorption, scattering, and attenuation coefficients for 
the 4 categories of water. 

Water 𝒂𝒂(𝝀𝝀) �𝒎𝒎−𝟏𝟏�   𝒃𝒃(𝝀𝝀) �𝒎𝒎−𝟏𝟏�   𝒄𝒄(𝝀𝝀) �𝒎𝒎−𝟏𝟏�   

Pure sea  0.053 0.003 0.056 

Clean ocean 0.069 0.08 0.151 

Coastal ocean 0.088 0.216 0.305 

Turbit harbor 0.295 1.875 2.170 

2.2. Underwater Wireless Optical Communication Channel 

There are two types of optical link configurations in UWOC. 
The first one is the line of sight (LOS) configuration where it is 
assumed that there is no obstacle between the receiver and the 
transmitter, i.e. they are directly in line of sight [14]. The other 
configuration is given as non-line of sight (NLOS), where the 
line of sight between the receiver and the transmitter is provided 
indirectly, which represents the real-world conditions more 
accurately [15]. Underwater optical link configurations are 
shown in Figure 1. 

 
Fig. 1. Underwater Optical Link Configurations 

Since the purpose of this study is modulation classification, 
the link type parameters remained in a limited range. Therefore, 
Beer-Lambert law is utilized where the LOS is a channel 
attenuation model. The Beer-Lambert law calculates the loss of 
light power during underwater propagation. In addition, it 
ignores the negative effects of scattering, turbulence, or 
communication without direct line of sight caused by the 
underwater natural environment. According to the Beer-
Lambert law, the power of light travelling a distance z from the 
transmitter to the receiver is computed according to following 
formula[11] : 

𝐼𝐼 = 𝐼𝐼0𝑒𝑒−𝑐𝑐(𝜆𝜆)𝑧𝑧                         (2) 

Here, 𝐼𝐼 is the output power of the light (W); 𝐼𝐼0 is the input power 
of the light (W); c(λ) is the total attenuation coefficient due to 
the underwater environment 𝑚𝑚−1 and z is the distance between 
the receiver and the transmitter (m). 

2.3. Classification of Modulation Techniques 

The automatic recognition of modulation signals is crucial for 
wireless communication systems that use different modulation 
techniques [15]. Classification of modulation techniques is an 
important system parameter in both non-cooperative military 
and civilian applications [16]. In this study, 5 modulation 
techniques frequently used in UWOC communication systems 
have been considered, and a performance evaluation has been 
made based on the proposed system. On-off keying (OOK), 
which is frequently preferred due to its easy application in 
UWOC systems, and pulse position modulation (PPM) which is 
a type of pulse modulation based on changing the positions of 
pulses within a fixed period [17], are two of the modulation 
techniques simulated in this study. Quadrature amplitude 
modulation (QAM), the technique that carries information using 
both amplitude and phase information, has also been used. As 
another modulation technique, quadrature phase shift keying 
(QPSK) has been preferred [18]. Finally, the sub-carrier 
intensity modulation (SIM) technique, which changes the 
optical carrier density with a subcarrier signal, has been 
implemented [19]. In this study, 100 signals, each consisting of 
64 bits, have been subjected to modulation using the 
aforementioned modulation schemes. In the modulation process, 
for each modulation type, the bit rate has been determined as 
1000 bps, the bit duration as 0.001 seconds, the sampling 
frequency as 20 kHz, the number of samples per bit as 20, the 
carrier wavelength of the signal used as 532 nm (green light) and 
the output power of the optical signal as 1 mW. Gaussian noise 
has been added to the modulated signals, and they have been 
passed through the underwater wireless optical channel by being 
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subjected to attenuation under the Beer-Lambert law. The 
simulations have been carried out for various signal-to-noise 
ratio (SNR) levels and for various ranges of distances between 
the receiver and transmitter. 

2.4. Automatic Classification of Modulation Techniques  

2.4.1. Feature Selection 

Feature selection is frequently used in machine learning and data 
classification. Feature selection can be defined as determining 
the most accurate representation of the most distinctive features 
of the data to be classified [20]. Before classification, DWT has 
been used to transform the signal into coefficients in Fourier 
space (approximation and detail) according to different 
frequency ranges [21]. Approximation coefficients decompose 
the signal into low-frequency components that represent the 
general trend of the data, while detail coefficients decompose 
the signal into high-frequency components highlighting fine 
details and abrupt changes. In this study, Haar, Daubechies 
(db2), Biorthogonal (Bior3.3), and Coiflet (Coif2) wavelet 
functions have been chosen based on their distinct properties and 
proven effectiveness in signal classification tasks [22, 23]. Haar 
wavelet, similar to a step function and is a discontinuous signal 
[24], is applied as a wavelet. Another wavelet, the Daubechies 
(db2), is a compact-supported, orthogonal wavelet used for the 
DWT and a multi-resolution transform that represents the signal 
at different resolution levels [25]. Bior (Biorthogonal 3.3) 
wavelets belong to the biorthogonal wavelet family and are 
analyzed and synthesized using different filters in both 
decomposition and reconstruction of the signals. The Bior3.3 is 
frequently preferred for data compression, edge detection and 
medical signal processing due to its symmetric and biorthogonal 
structure [26]. Coiflets wavelet family includes orthogonal 
wavelets developed by Daubechies and optimized to provide 
higher moment conditions. The Coif2 wavelet is the second-
order member of the Coiflets family and is preferred due to its 
symmetric structure and high accuracy time-frequency 
resolution [27].  

Three-level DWTs have been carried out for the four wavelet 
types mentioned above. All the approximation and detail 
coefficients have been obtained for each level. The mean, 
variance, and energy parameters of both approximation and 
detail coefficients have been computed and they have been used 
as training data for machine learning process. As a result, 18 
features have been extracted separately for each wavelet 
function. The details of the extracted features are given in Table 
2. 

Table 2. The wavelet features of data set: Approximation (Ap.); 
Detail (De.) 

Level Mean Variance Energy 

1 Ap. De. Ap. De. Ap. De. 

2 Ap. De. Ap. De. Ap. De. 

3 Ap. De. Ap. De. Ap. De. 

 

2.4.2. Feature Selection using Genetic Algorithm 

Genetic algorithms try to solve a population of existing solutions 
using evolutionary processes such as natural selection, 
crossover, mutation, and elitism to find the desired optimum 
solution for a problem [28]. The feature selection algorithm aims 
to discover a subset of the candidate set given at the input and to 
make a finer classification with fewer features [29]. Feature 
selection will reduce the number of features needed for machine 
learning algorithms and also it will reduce the cost [30]. In this 
study, the parameters of the genetic algorithm used for feature 
selection are determined as follows: population size is 50, 
number of generations is 100, crossover rate is 0.9, mutation rate 
is 0.1, the size of the tournament selection used as the selection 
mechanism is 4 and the number of individuals to be kept as elite 
is 5. In addition, the ratio of test data used in the genetic 
algorithm is 0.2. 

2.4.3.  Classification  

In the proposed system model, 3-level transformations of 
modulated signals have been performed using Haar, Daubechies 
(db2), Bior (Biorthogonal 3.3), and Coiflets (Coif2) wavelet 
functions. For each wavelet, 3 approximation and 3 detail 
coefficients have been extracted at each level. All coefficients 
have mean, variance, and energy parameters, and thus, a total of 
18 features have been extracted. In this study, the genetic 
algorithm has been utilized as a feature selection tool. The task 
of the genetic algorithm is to reduce the features in a way that 
the best classification among different features can be made with 
the least number of features if it is possible. In the genetic 
algorithm, the individual is the selected set of features, and the 
fitness score of the individual is the accuracy rate of the 
classification made with the K-Nearest Neighbor (KNN) 
classification algorithm. The flow diagram of the proposed 
system is given in Figure 2. 
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Fig. 2. Flowchart of the proposed system 

3. Results and Discussion 

The proposed system has been simulated for various parameter 
values which were obtained considering different water 
characteristics. Table 3 shows a general result of the proposed 
system simulated on different SNR values of the signals; where 
M is the distance between the receiver and transmitter, W is the 
class of wavelet utilized for feature extraction, and D is the 
classification accuracy.  

Table 3. Selected Features  
SNR M W D Selected Features 
-10 10 Bior 3.3 0.92 2,4,8,10,15,18 
-10 10 Haar 0.89 3,5,6,8,9,13,14 
-10 10 Db2 0.9 8,11,13,14,18 
-10 10 Coif 2 0.93 1,5,7,8,9,12,13 
-10 20 Bior 3.3 0.94 2,5,6,9,10,16,17 
-10 20 Haar 0.88 2,9,10,11,12,14,16,17,18 
-10 20 Db2 0.87 1,2,5,6,7,8,11,12,13 
-10 20 Coif 2 0.90 2,5,7,14,18 
-10 30 Bior 3.3 0.88 3,4,5,6,7,8,9,12,13,15,17,18 
-10 30 Haar 0.86 2,3,5,7,8,9,12,14,15,16,17 
-10 30 Db2 0.85 3,6,8,11,13,18 
-10 30 Coif2 0.86 1,2,4,5,6,7,9,10,14,15,17,18 
-10 40 Bior 3.3 0.86 4,6,8,9,10,11,12,17 
-10 40 Haar 0.89 1,3,4,6,7,8,9,11,12,13,14,5,16 
-10 40 Db2 0.91 2,5,6,8,9,11,12,15,16,17 
-10 40 Coif2 0.89 2,5,6,8,10,11,16 
-10 50 Bior 3.3 0.90 3,6,8,11,12,13,15,18 

-10 50 Haar 0.88 1,7,8,13,14,15,17,18 
-10 50 Db2 0.94 2,5,6,7,8,12,13,14,16 
-10 50 Coif2 0.93 1,3,4,7,11,12,14,15,18 
-5 10 Bior 3.3 0.95 5,6,7 
-5 10 Haar 0.91 1,2,3,6,10,11,14,15 
-5 10 Db2 0.94 3,5,7,8,10,12,17 
-5 10 Coif 2 0.87 2,3,7,8,9,10,15 
-5 20 Bior 3.3 0.86 2,5,9,10,11,12,15,16 
-5 20 Haar 0.87 1,2,5,6,8,10,11,12,13,15 
-5 20 Db2 0.94 1,3,5,6,10,11,14,16 
-5 20 Coif 2 0.86 2,3,4,5,6,9,10,15,16,17 
-5 30 Bior 3.3 0.87 1,2,6,9,10,11,13,14 
-5 30 Haar 0.89 1,7,9,10,12,13,17,18 
-5 30 Db2 0.91 2,3,4,5,7,11,12,17,18 
-5 30 Coif2 0.89 2,5,6,7,9,10,11,12,15 
-5 40 Bior 3.3 0.91 1,6,7,10,11,13,14,17,18 
-5 40 Haar 0.91 7,10,11,18 
-5 40 Db2 0.91 1,7,8,9,10,11,16,17,18 
-5 40 Coif2 0.86 1,3,5,7,8,10,11,12,15,18 
-5 50 Bior 3.3 0.81 6,9,11,14,15 
-5 50 Haar 0.88 4,6,9,11,12,14,15,17,18 
-5 50 Db2 0.8 3,4,6,10,11,13,14,15,16,17 
-5 50 Coif2 0.8 4,5,7,8,14,17 
0 10 Bior 3.3 0.95 1,3,8,10,11,12,13,17 
0 10 Haar 0.9 2,3,4,14,15,16,18 
0 10 Db2 0.94 3,4,7,8,9,15,17,18 
0 10 Coif 2 0.96 1,3,4,6,8,9,10,11,12,13 
0 20 Bior 3.3 0.95 1,2,4,6,7,9,10,17,18 
0 20 Haar 0.89 1,3,4,5,8,11,13,14,15,17,18 
0 20 Db2 0.9 3,4,6,9,10,12,15,16,18 
0 20 Coif 2 0.92 1,3,6,7,8,9,10,11,12,16,18 
0 30 Bior 3.3 0.89 4,5,6,8,9,11,13,14,15 
0 30 Haar 0.9 3,4,8,12,14,15,17 
0 30 Db2 0.92 3,6,8,10,13,17,18 
0 30 Coif2 0.93 2,5,7,9,11,14,15,18 
0 40 Bior 3.3 0.89 1,2,4,14,15 
0 40 Haar 0.87 1,2,3,4,6,7,9,11,14,15,16,18 
0 40 Db2 0.89 2,5,6,7,9,12,13,15 
0 40 Coif2 0.9 1,3,6,11,12,13,14,17,18 
0 50 Bior 3.3 0.9 1,3,5,9,11,12,14,15 
0 50 Haar 0.87 2,3,11,12,13,15,18 
0 50 Db2 0.87 1,2,5,6,7,8,10,12,13,14 
0 50 Coif2 0.87 1,5,7,9,10,11,12,16,18 

10 10 Bior 3.3 0.92 1,2,3,9,10,11,13,14,15 
10 10 Haar 0.91 1,3,4,5,7,8,9,13,14,17,18 
10 10 Db2 0.94 2,4,12,14,15,16 
10 10 Coif 2 0.95 1,3,5,7,8,9,12,15,17 
10 20 Bior 3.3 0.92 1,2,3,4,6,8,9,10,12,15 
10 20 Haar 0.91 1,2,3,4,7,8,9,12, 
10 20 Db2 0.89 1,5,6,9,12,14,15,16,17,18 
10 20 Coif 2 0.93 7,11,14,15,17 
10 30 Bior 3.3 0.93 1,3,5,6,7,9,13,15,17,18 
10 30 Haar 0.93 1,2,7,10,11,12,17 
10 30 Db2 0.92 6,7,8,14,15,17 
10 30 Coif2 0.93 6,9,12,13 
10 40 Bior 3.3 0.91 2,6,8,9,11,14,15,17,18 
10 40 Haar 0.90 3,5,6,10,11,15 
10 40 Db2 0.9 1,3,4,5,7,12,13,14,17,18 
10 40 Coif2 0.92 2,4,5,6,13,14 
10 50 Bior 3.3 0.93 1,2,3,7,12,15,18 
10 50 Haar 0.88 1,2,3,9,10,11,13 
10 50 Db2 0.91 2,3,6,8,9,14,15 
10 50 Coif2 0.9 2,3,4,6,10,15,17 
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According to Table 3, the classification accuracy remains in a 
limited range at low SNR (-10 dB, -5 dB) levels as expected. It 
has been observed that Coif2 and Bior 3.3 wavelets generally 
provide higher accuracy at low SNR values. Although the Haar 
wavelet provides lower accuracy at low SNR levels, it has been 
observed that it performs well in some cases with certain 
features. The Bior 3.3 wavelet generally has stable performance 
and can give the best results at low SNR levels. It is observed 
that the features of level 2 and level 3 are more selected by the 
genetic algorithm. According to the table, the 5 most selected 
features are given as energy of approximation coefficients at 
level 3 (43 times), energy of detail coefficients at level 1 (43 
times), energy of approximation coefficients at level 2 (41 
times), variance of detail coefficients at level 2 (40 times), and 
energy of approximation coefficients at level 1 (40 times), 
respectively. These results show that 4 of the 5 most selected 
features are energy parameters. 

The best 5 features have been used separately according to the 
four wavelet types and the classification has been made based 
on the K Nearest Neighbor Classification algorithm (k=10) 
using only K-fold cross-validation (k=10). The results are given 
in Table 3 through Table 6 for each wavelet. The modulated 
signals are assumed to be at a distance of 20 m to receiver and 
have an SNR level of -5 dB. When the confusion matrices for 
the best 5 features are evaluated, it has been observed that the 
classification error is mainly caused by QAM and QPSK classes 
throughout 5 modulation techniques. 

The results demonstrate that all the considered wavelets achieve 
high classification performance for OOK, PPM, and SIM 
signals. However, performance deteriorates significantly for 
QAM and QPSK signals due to their inherent modulation 
similarities, which complicate discrimination. QAM and QPSK 
signals present more significant classification results, as all the 
wavelets perform well for the simpler modulation schemes 
(OOK, PPM, SIM). The Coif2 wavelet yields classification 
accuracies of 0.8 for QAM and 0.4 for QPSK. The Haar wavelet 
performs poorly, with an average accuracy of 80% ranking it 
among the least effective options. While the Db2 and Bior3.3 
wavelets exhibit comparable performance, Db2 slightly 
outperforms Haar in terms of classification accuracy of QAM 
signals. 

The proposed classification scheme achieves an average 
classification accuracy of 82% for overall wavelets despite the 
high complexity of the five-class problem. While DWT 
coefficients exhibit excellent classification performance for 
modulation schemes with distinct characteristics (OOK, PPM, 
and SIM), the performance degrades for modulation types 
sharing similar properties such as QAM and QPSK. At this 
point, it is worth noting that the genetic algorithm consistently 
identifies energy parameters as the most discriminative features 
across all considered wavelets. 

 
Fig.3. Coif 2 Transform Confusion Matrix, Accuracy: %84 

 
Fig.4. Haar Transform Confusion Matrix, Accuracy: %80 

 
Fig.5. Db 2 Transform Confusion Matrix, Accuracy: %82 
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Fig.6. Bior3.3 Transform Confusion Matrix, Accuracy: %82 

4. Conclusion 

In this study, it is targeted to classify modulation signals used in 
underwater communications considering five different 
modulation techniques. A three-level discrete wavelet transform 
has been considered for feature extraction and an 18-
dimensional feature vector has been obtained by computing the 
mean, variance, and energy of the detail and approximation 
coefficients at each level. In addition, a genetic algorithm has 
been utilized to determine the most significant features. The five 
most discriminative features have been selected, and an average 
accuracy of 82% has been achieved using the K-nearest 
neighbors algorithm considering four primary wavelets (Coif2, 
Haar, Db2, and Bior3.3). The presented work in this study can 
support underwater robots for exploring the seabed, sensors for 
real-time pollution tracking, and military systems needing 
secure, fast communication. In future studies, the use of 
advanced classifiers such as SVM or CNN may be considered to 
further improve the classification of complex modulation types. 
Additionally, designing adaptive systems that can dynamically 
adjust modulation based on channel feedback can make it 
possible to achieve high-performance modulation classification 
over larger deployment areas. 
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