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 Early diagnosis and precise detection of skin cancer represent a global health priority since this disease 

remains highly dangerous while being among the most frequent ones. This research investigates the 
effectiveness of deep learning techniques, specifically Convolutional Neural Networks (CNN) and the 
VGG16 architecture, for skin cancer detection and classification. The study works with images from 
the International Skin Imaging Collaboration (ISIC) while employing resizing and augmentation 
preprocessing to boost its model performance. We evaluate the proposed model using precision, recall, 
and F1-score metrics to ensure accurate classification. The proposed CNN model achieved 87% 
validation accuracy, outperforming the VGG16 model, which attained 65% accuracy. Experimental 
results highlight the potential of AI-driven models in improving diagnostic accuracy, demonstrating 
their significance in medical image analysis and early skin cancer detection. 
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1. Introduction 

Skin cancer can occur very often and can be life-threatening, so 
making sure it is detected early is of great importance 
worldwide. Currently, some diagnostic methods depend on a 
physician’s experience and invasive tools that might not be 
available when needed. Skin cancer can be defined as an unusual 
growth of skin cells caused by exposure to ultraviolet rays from 
the sun. These skin cells grow abnormally and form tumors. This 
research shows the efficiency of deep learning models like CNN 
and VGG16 architecture for early skin cancer detection. It is the 
most prevalent form of cancer worldwide. It can extend to other 
organs and tissues through the bloodstream or lymphatic system 
and cause further harm to the body. Individuals with light hair 
and red spots across their skin have a higher chance of 
developing skin cancer. The use of the ISIC dataset and robust 
preprocessing and augmentation methods helps provide a range 
of representative images for the research models. Authors talk 
about how accuracy, precision, recall and F1-score assess model 
performance in the study, as well as point out that custom CNNs 
excel over VGG16. Our goal through this system is to provide 
doctors with an intelligent, image-based tool that improves 
diagnostic accuracy for use in both clinical and resource-poor 
areas. 

CNN and VGG16 fall under the general category of deep 
learning models within artificial intelligence (AI), specifically 
used for image classification and analysis. CNN is a type of 
neural network particularly effective for image processing. It 
automatically learns spatial hierarchies of features like edges, 

shapes, and textures through convolutional, pooling, and fully 
connected layers. CNNs are efficient in skin cancer detection 
because they can automatically extract features from images, are 
scalable and adaptable to various image tasks, and perform well 
with large datasets and high-dimensional image data. VGG16 is 
a specific CNN architecture introduced by the Visual Geometry 
Group at Oxford. It consists of 16 layers (13 convolutional and 
3 fully connected layers) and is known for its uniform structure, 
using small 3x3 filters throughout. It is widely used for 
benchmarking in image classification tasks. VGG16 provides a 
well-tested, stable architecture, has proven performance in many 
image recognition challenges like ImageNet, and offers a good 
baseline for comparison and transfer learning. Comparing CNN 
and VGG16 helps determine which model provides better 
accuracy and generalization for skin cancer cell detection. CNNs 
can be custom-built and lighter, while VGG16 is deeper but 
more resource-intensive. How architecture depth and feature 
extraction capabilities affect diagnostic outcomes. 

Three principal skin cancer forms exist: basal, squamous, and 
melanoma. Various kind of skin cancers exists globally. Actinic 
keratosis (AK) lesions typically appear as petite, rough, and 
crusty patches on the skin. It, also known as solar keratosis, is a 
scaly or crusty skin growth indicative of sustained sun damage. 
It may progress to invasive neoplasms and has been interpreted 
as the earliest sign of skin cancer [1]. Melanoma is the deadliest 
in comparison to other skin cancers. Skin cancer forms due to 
melanocyte malignant transformation and functions as one of 
the most lethal skin malignancies because it easily resists 
treatments, while causing frequent recurrence and resulting in 
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poor patient survival. During 2014, the United States recorded 
76,100 new melanoma diagnoses, and the mortality rate was 
estimated to be 9710 deaths. However, with a survival rate of 
99%, it can be surgically removed by detecting it in an early 
stage [2]. This type of lesion is a relatively small circle, which 
varies from pink to brown while keeping either a thin tan layer 
or forming bigger clumps across the face, trunk, and extremities. 
Doctors can easily detect it. However, patients rarely receive 
tissue samples for examination [3]. Basal cell carcinoma (BCC) 
stands as the least common type of skin cancer worldwide. It is 
mainly caused by long-term exposure to the sun's ultraviolet 
rays. BCCs are slow-growing, locally invasive, epidermal skin 
tumors that primarily affect individuals with fair skin [4]. 
Cancer registries do not encompass data on BCC due to its low 
mortality rate in many countries. However, evaluating data from 
insurance registries and official statistics in the United States, 
BCC incidence has been estimated to reach 4.3 million cases 
each year, and it is common in the Caucasian population [5]. The 
medical description of Nevus defines it as a pigmented skin 
growth called a mole. Squamous cell carcinoma develops in the 
outer layer of skin from flat squamous cells that constitute this 
skin layer. head and neck region [6]. The skin condition known 
as dermatofibroma presents itself as a minor skin elevation 
called fibrous histiocytoma. People often find dermatofibroma 
initially on their legs, even though it can appear across any area, 
since this condition typically develops in female bodies. It is one 
of the most commonly encountered soft-tissue lesions, 
accounting for approximately 3% of skin lesion specimens 
received by dermatopathology laboratories [7]. Detecting and 
curing these various types of skin cancer globally is imperative.  

In conclusion, this paper has demonstrated remarkable potential 
in skin cancer detection. It can learn intricate patterns and 
features from an efficient approach to identifying skin cancer 
variations by comparing deep-learning models. This paper 
utilizes and compares the accuracy of two different models: 
CNN and VGG16. 

1.1. Related Work 

Rezaoana, N., and his coauthors follow a three-phase approach 
in their study. Firstly, they perform data acquisition and 
augmentation to gather relevant information. In the model 
development phase, they introduce a unique parallel CNN 
architecture with dilated convolution layers for feature 
extraction and classification. Through comparative analysis 
against VGG-16 and VGG-19 models, the authors demonstrate 
the superior performance of their proposed model in terms of 
accuracy, precision, recall, and F1-score. This structured 
approach effectively showcases the ability of convolutional 
neural networks (CNNs) to accurately classify skin cancer while 
highlighting potential advancements in medical diagnostics. The 
authors suggest exploring alternative CNN architectures and 
expanding datasets to enhance the model’s robustness [8]. In a 
related study, Rezaoana et al. also structure their approach into 
three main phases: gathering and enhancing data, creating the 
model, and making predictions. They employ various AI 
algorithms, including CNNs and Support Vector Machines 
(SVMs), and integrate these with image processing techniques 
to build a more effective framework. This results in an improved 

accuracy rate of 85% [9]. Another group of researchers proposes 
a comprehensive method that combines preprocessing, lesion 
detection, and feature extraction based on the widely accepted 
ABCD rule: Asymmetry, Border irregularity, Color, and 
Diameter, followed by classification using the Total 
Dermatoscopic Value (TDV). Their system achieves promising 
results, with an accuracy of 90% in identifying benign, 
suspicious, and malignant lesions. Implementing automated 
diagnostic systems such as these enhances the speed and 
accuracy of skin cancer detection. This computer-based 
approach enables the identification of subtle visual patterns such 
as asymmetry, color variation, and texture differences that may 
go unnoticed by the human eye, thereby reducing diagnostic 
time and improving the overall accuracy of clinical evaluations 
[10]. Haque, T. has a review that considers skin physiology, non-
melanoma skin cancer (NMSC), the relationship between AK 
and skin cancer, and drugs administered topically for these 
conditions. The dermal preparations for managing NMSC and 
AK are discussed in detail. Notably, few studies have examined 
drug disposition in cancerous skin or AK. Finally, recent novel 
approaches for targeting drugs to skin neoplasms [1]. Naves, L. 
intends to elucidate the possibilities to treat melanoma skin 
cancer using hybrid nanofibers developed by an advanced 
electrospinning process. Their review shows that enhanced 
permeability and retention are the basis for nanotechnology, 
which aims at topical drug delivery. They also report a case 
study involving two approaches targeting melanoma skin cancer 
therapy: magnetic-based core–shell particles and electrospun 
mats [2]. Karadag, A. and his coauthors found that Seborrheic 
keratosis (SK), whose appearance is generally a small roundish 
reddish to brownish scaling lesion ranging in size from a few 
mm to many mm, may have a single presentation or be one of 
many such lesions. In recent retrospective studies and case 
reports, SKs have rarely been found to have malignant 
characteristics. Although these studies are inconclusive, lesions 
that are inflamed, bleeding, ulcerated, or sufficiently irritated 
may require being biopsied to rule out melanoma or other 
malignancies [3]. 

2. Research Methodology 

This section present techniques used to detect skin cancer. The 
approach includes exploring and evaluating two different model 
architectures: CNN) and VGG16. The main objective is to 
compare and find out the performance of these models and 
identify their respective accuracy strengths and weaknesses in 
classifying skin cancer. 

2.1. Data Collection and Preparation 

2.1.1. Collecting our Data 

The data used in this model is collected from the International 
Skin Imaging Collaboration (ISIC). Our data consists of images 
of 9 types of skin cancer [13]. Those are: Actinic Keratosis, 
Basal Cell Carcinoma, Dermatofibroma, Melanoma, Nevus, 
Pigmented Benign Keratosis, Seborrheic Keratosis, Squamous 
Cell Carcinoma, and Vascular Lesion. Among the nine different 
classes, pigmented benign keratosis is the most represented 
category, with 462 images [13]. Master images of melanoma 
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skin cancer represent the second most common category among 
438 examples that demonstrate the importance of early 
diagnosis in clinical settings [13]. Humans tend to develop basal 
cell carcinoma as their leading skin cancer type, and the 
collection contains 376 images of this form [13]. The three 
groups of lesions under nevus encompass moles and benign 
pigmented lesions, which amount to 357 cases. Squamous cell 
carcinoma, a malignant tumor that can spread if left untreated, 
has 181 images in the dataset, offering significant representation 
for model training [13]. Less common conditions, such as 
vascular lesions and actinic keratosis, are included with 139 and 
114 images, respectively. Dermatofibroma, a benign skin 
nodule, is represented by 95 samples [13]. Finally, seborrheic 
keratosis, a non-cancerous but often cosmetically concerning 
condition, is the least represented class with 77 images. This 
distribution of images across both malignant and benign 
categories provides a robust foundation for training deep 
learning models. 

It is essential to see the balance and potential biases in the 
distribution of images across different classes in the dataset. To 
achieve this, data visualization techniques were employed. A bar 
plot created using the 'seaborn' library illustrates the quantity of 
images in each class. 

 

Fig. 1. Distribution of our data 

The pie chart illustrates the distribution of images across 
different skin lesion categories in a dataset. The data consists of 
nine classes corresponding to specific percentages throughout 
the dataset. The survey analysis shows Seborrheic Keratosis 
being the leading identified lesion at 21%, followed by 
Melanoma and Basal Cell Carcinoma, together with Seborrheic 
Keratosis, which forms 57% of all examined skin conditions. 
The distribution of samples implies an adequately balanced 
dataset that features frequent skin lesions because it presents a 
wide variety of cases for medical image classification systems. 

 

 

2.1.2. Data Visualization and Preprocessing 

This section presents the visualization and exploration of the 
skin cancer dataset. It will help to provide insight into the data 
presented in each class. A single image was taken from each 
class to show the data visually and presented using the 
‘matplotlib’ library. This will effectively provide viewers with 
insight into our dataset. The display arrangement arranges these 
images in a 3x3 grid layout, providing a visual insight into our 
dataset's comprehensive distribution of classes. Figure 1 
represents one sample image from each type of skin cancer 
category. 

 

Fig. 2. Example of our data [13] 

Data preprocessing is an essential part of image processing. 
Modifying the data is necessary to feed it into a model. 
Preprocessing the images ensures they are of the desired size, 
format, and quality. Preprocessed techniques and approaches are 
discussed in later sections. 

2.1.3. Image Resizing for Standardization 

The collected dataset is vast, and due to our limited resources, it 
is essential to resize our data. The original dataset downloaded 
from ISIC is close to 1GB, and each image is up to 15 MB. But 
to process those images, a powerful machine is needed. So, due 
to our limited resources, we resized and decreased the size of 
each image. This strategic decrease reduced the size of our 
dataset to close to 200 MB. 

2.1.4.  Data Augmentation for Improved Generation 

The original dataset required data augmentation to tackle its 
class imbalance problem. The approach increased the dataset 
size and ensured balanced class distribution because this aspect 
prevents model bias and enhances generalization during 
training. The augmentation process was implemented using the 
‘Augmentor’ Python library. A combination of rotation, 
horizontal flipping, zooming, and brightness adjustment 
techniques was applied to generate synthetic images from the 
original dataset. Rotation (±25 degrees) was primarily used, as 
it does not significantly alter lesion characteristics and maintains 
diagnostic integrity. Horizontal flipping was also employed, as 
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lesions can appear on either side of the body without clinical 
significance. Additional transformations, such as slight zooming 
and brightness changes, introduced variability while preserving 
critical features necessary for accurate classification. Each 
underrepresented class was augmented until it reached 
approximately the same number of samples as the most 
represented class, resulting in a more uniform dataset 
distribution. On average, three new samples were generated per 
original image for the minority classes. After augmentation, the 
total number of images increased from 2,239 to 6,739. This 
process significantly enhanced the dataset's diversity and 
improved the deep learning model's ability to generalize across 
unseen examples during testing. 

Table 1. Argumentation effect in the dataset 

Total images before 
Argumentation 

Total images after 
Argumentation 

2239 6739 

2.2. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a fundamental 
architecture in deep learning, widely used for tasks such as 
image recognition, object detection, and natural language 
processing. CNNs have shown remarkable success in various 
computer vision tasks, including image classification, object 
detection, and segmentation [11]. CNNs are designed to 
effectively capture patterns in images, making them highly 
suitable for tasks that involve understanding complex visual data 
[12]. The architectural design of CNNs is taken from the 
mechanism in the human brain. 

2.2.1. Training Dataset Preparation 

The images are organized into batches to help this model learn. 
Each batch contains 32 images, resized to 180 x 180 pixels. The 
labels (types of cancer) are also formatted into a ‘categorical’ 
format. “Caching” is used to handle the data efficiently. It loads 
the images into memory or RAM, helping to speed up the 
learning process. 

2.2.2. Building CNN Model 

The proposed CNN model is designed layer by layer using a 
sequential approach. Each layer acts as a building block, 
allowing it to learn specific aspects of the images. The proposed 
model is structured using: 

Data rescaling layer: This layer rescales the pixel value of the 
image. It ensures all the colors are in the same range so the 
model can learn effectively. 

Convolution layer: This layer is responsible for recognizing 
patterns in the image. This filter teaches us to recognize feature-

like edges, texture, and shape, and passes the information to the 
next layer. 

Pooling layer: After each convolution layer, we have a pooling 
layer. It zooms out and captures the most critical information 
from the pattern that the previous layer found. It helps reduce 
complexity and makes the model faster and efficient. 

Dropout layer: Whenever a deep CNN model is used, that 
model tends to memories the training data. The dropout layer 
randomly selects some neurons and deactivates them. And this 
technique avoids overfitting. 

Dense layer: This layer analyzes, combines information, and 
makes predictions. Our proposed architecture has two thick 
layers, with the first layer having 128 units and using the ‘relu’ 
activation function. 

Output layer: This layer provides output. It uses the ‘softmax’ 
activation function and provides a probability of the image 
belonging to each type of skin cancer. 

Table 2. The summary of the proposed CNN model with 
sequential layers, configuration, and output shape 

Layer (type) Output Shape Param 

rescaling (Rescaling) (None, 180, 180, 3) 0 

conv2d (Conv2D) (None, 178, 178, 32) 896 

max_pooling2d 
(MaxPooling2D) 

(None, 89, 89, 32) 0 

conv2d_1 (Conv2D) (None, 87, 87, 64) 18496 

max_pooling2d_1 
(MaxPooling2D) 

(None, 43, 43, 64) 0 

conv2d_2 (Conv2D) (None, 41, 41, 128) 73856 

max_pooling2d_2 
(MaxPooling2D) 

(None, 20, 20, 128) 0 

dropout (Dropout) (None, 20, 20, 128) 0 

flatten (Flatten) (None, 51200) 0 

dense (Dense) (None, 128) 6553728 

dropout_1 (Dropout) (None, 128) 0 

dense_1 (Dense) (None, 9) 1161 

Total params: 6,648,137 

Trainable params: 6,648,137 

Non-trainable params: 0 
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Fig.  3. A visual representation with sequential layers of the proposed model 

 

2.2.3. Model Compilation and Training 

We used the Adam optimization algorithm to train our CNN 
model. A variant of stochastic descent that dynamically changes 
the learning rate during training. The ‘categorical_crossentropy’ 
loss function was selected to model’s performance in the multi-
task classification task. 

In this proposed model, a two-callback mechanism is used. 

• Model Checkpoint 

• Early Stopping 

Model Checkpoint: which saves the model weight in a 
checkpoint file. This ensures that model progress, architecture, 
and learned parameters are stored in a specified interval in a file 
(model.h5). It monitors specified metrics, and a callback 
determines whether the current model has improved. If 
validation accuracy improves, model weights are saved. 

Early Stopping: Its callbacks are designed to monitor the 
validation matrix (validation accuracy in our case). They stop 
the training process if the monitor matrix fails to show 
improvement for a specified number of epochs. This helps the 
model avoid overfitting and increases training efficiency. 

The proposed model is trained on 20 epochs, representing the 
number of times the dataset passes through the model while 
training. Trading history, such as the loss curve and accuracy, is 
discussed in a later section. 

2.3. VGG16 

VGG16 is a convolutional neural network architecture, known 
as Visual Geometry Group 16. It contains 16 layers, including 
13 convolutional and three fully connected layers. VGG16 uses 
small 3x3 convolutional filters and pooling layers to extract 
features. 

 

 

2.3.1. Training Dataset Preparation 

The images are organized into batches to help this model learn. 
Each batch contains 64 images. Images are resized to 224 x 224 
pixels. The labels (types of cancer) are also formatted into a 
‘categorical’ format. 

2.3.2. Building VGG16 Model 

In the ‘create_model’ function, the proposed architecture was 
built using the VGG16 architecture with an additional layer. 

VGG16 Base and fine-tuning: The neural network model 
combines the VGG16 architecture with custom-designed layers. 
The VGG16 base is loaded through the VGG16 function, where 
the ‘include_top’ parameter is set to False to exclude the fully 
connected layers. Fine-tuning is also used, which gives the 
flexibility to specify a certain number of trainable or frozen 
layers within the VGG16 base. 

Tailored layer: A custom layered is used on top of the VGG 
layer. 

Flatten layer: This layer reshapes the output into a vector. 

Dense layer: This layer analyzes, combines information, and 
makes predictions. Our proposed architecture has two thick 
layers, with the first layer having 4096 units and using the ‘relu’ 
activation function. 

Dropout layer: Whenever, deep layered model is used, that 
model tends to memories the training data. The dropout layer 
randomly selects some neurons and deactivates them. And this 
technique avoids overfitting. 

Model Compilation: After building the model architecture, the 
next step is to compile it. The model is compiled using the Adam 
optimizer, with categorical cross-entropy as the loss function 
and accuracy as the evaluation metric. 

 

 

 

 



Sabit et al. IJPTE Vol, 4, No.01, pp.26-36 June 2025 
 

 31 

 

Table 3. The summary of the proposed VGG16 model with sequential layers, configuration, and output shape 
Layer Name Output Shape Parameters 

input_2 (None, 224, 224, 3) 0 

block1_conv1 (None, 224, 224, 64) 1,792 

block1_conv2 (None, 224, 224, 64) 36,928 

block1_pool (None, 112, 112, 64) 0 

block2_conv1 (None, 112, 112, 128) 73,856 

block2_conv2 (None, 112, 112, 128) 1,47,584 

block2_pool (None, 56, 56, 128) 0 

block3_conv1 (None, 56, 56, 256) 2,95,168 

block3_conv2 (None, 56, 56, 256) 5,90,080 

block3_conv3 (None, 56, 56, 256) 5,90,080 

block3_pool None, 28, 28, 256) 0 

block4_conv1 (None, 28, 28, 512) 11,80,160 

block4_conv2 (None, 28, 28, 512) 23,59,808 

block4_conv3 (None, 28, 28, 512) 23,59,808 

block4_pool (None, 14, 14, 512) 0 

block5_conv1 (None, 14, 14, 512) 23,59,808 

block5_conv2 (None, 14, 14, 512) 23,59,808 

block5_conv3 (None, 14, 14, 512) 23,59,808 

block5_pool (None, 7, 7, 512) 0 

flatten (None, 25088) 0 

dense_3 (None, 4096) 10,27,64,544 

dense_4 (None, 1072) 43,91,984 

dropout_1 (None, 1072) 0 

dense_5 (None, 9) 9,657 

Total params: 121,880,873 

Trainable params: 107,166,185 

Non-trainable params: 14,714,688 

Table 3 summarizes the proposed VGG16 model, with 
sequential layers, configuration, output shape, and parameter 
number in each layer. 
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Fig. 4. A visual representation with sequential layers of the proposed VGG16 model 

 

3. Results and Findings 

3.1. Proposed CNN model result 

Various analyses evaluated the proposed skin cancer detection 
model's performance. This section explains the key findings 
observed during the model's training and validation phases. 

Figure 5 represents a visualization and the changes in accuracy 
and loss in the training phase. The x-axis represents the number 
of training epochs, and the y-axis represents the corresponding 
accuracy or loss value. The accuracy curve in Figure 5 (a) shows 

the model's ability to classify skin cancer images correctly. This 
graph shows that the training and validation accuracy increase 
while the number of epochs increases. By observing this graph, 
shows this model has no overfitting because the training and 
validation curves are close to each other. Figure 5 (a) shows that 
this model can classify with 87% accuracy. The loss curve in 
Figure 5 (b) represents the data loss curve during the trading 
process. While the epoch number increases trading and 
validation curve decreases. It demonstrates that the proposed 
model is minimizing errors while it learns. 

 

a)        b) 

Fig. 5. (a) accuracy graph and (b) loss graph of the proposed model visualization 

 
3.2. Proposed CNN model evaluation 

In this section, we evaluate the performance of our proposed 
model using various metrics such as precision, recall, and F-1 
score. Those are used to assess our proposed model’s 
classification capability of our dataset each class. A confusion 
matrix is also used to represent the distribution of real and 
predicted class labels visually. 

The evolution metrics are: 

• Precision 

• Recall 

• F1-Score 

• Confusion Matrix 
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Precision: It indicates how many instances predicted in a 
particular class belong in that class. In other words, it measures 
the accuracy of true positives. 

Recall: Measures the proportion of positive instances that the 
model correctly predicted. 

F1-Score: This is the mean of precision and recall. It balances 
precision and recall, and it is helpful for an imbalanced class. 

Table 4. Performance Evaluation of our proposed model 
Class Precision Recall F1 - Score 

seborrheic keratosis 0.33 0.19 0.24 

actinic keratosis 0.50 0.56 0.53 

vascular lesion 0.40 0.12 0.19 

pigmented benign 
keratosis 

0.29 0.25 0.27 

melanoma 0.36 0.88 0.51 

basal cell carcinoma 0.50 0.56 0.53 

dermatofibroma 0.00 0.00 0.00 

nevus 0.31 0.25 0.28 

squamous cell 
carcinoma 

1.00 0.67 0.80 

In Table 4, the precision values indicate how accurate the 
optimistic predictions are for each class. For example, for 
squamous cell carcinoma, a precision of 1.00 means that all 
predictions made for this class were correct, with no false 
positives. On the other hand, recall values show the proportion 
of actual instances that the model successfully identified. In the 
case of squamous cell carcinoma, a recall of 0.67 indicates that 
the model identified 67% of this class's cases. F1- scores provide 
a balanced measure by considering both precision and recall. A 
higher F1-score, such as 0.80 for squamous cell carcinoma, 
suggests a better trade-off between making accurate optimistic 
predictions and capturing a significant portion of the actual 
instances. 

Table 4 demonstrates that multiple classes still need enhanced 
results in their classification segment. The model succeeded in 
recognizing squamous cell carcinoma and melanoma with 
promising accuracy yet exhibited low performance in 
classifying dermatofibroma and vascular lesions. The model 
demonstrates difficulties when effectively applying its learning 
to all categories. Additional training iterations, hyperparameter 
tuning, data augmentation, or exploration of alternative model 
architectures are encouraged to improve the overall 
performance. 

 

 

Table 5. The Confusion Matrix proposed model 

 
Class 

seborrheic 
keratosis 

actinic 
keratosis 

vascular 
lesion 

pigmented 
benign 

keratosis 
melanoma basal cell 

carcinoma dermatofibroma nevus 
squamous 

cell 
carcinoma 

seborrheic 
keratosis 2 0 1 0 9 3 0 1 0 

actinic keratosis 1 6 0 1 0 5 0 2 1 

vascular lesion 1 2 4 3 2 2 0 2 0 

pigmented benign 
keratosis 0 0 0 2 9 5 0 0 0 

melanoma 0 0 0 1 12 3 0 0 0 

basal cell 
carcinoma 0 2 1 0 1 9 0 3 0 

dermatofibroma 0 1 0 2 0 0 0 0 0 

nevus 0 2 3 1 3 3 0 3 1 

squamous cell 
carcinoma 

 
0 

 
1 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
2 
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Table 5 represents the Confusion matrix of our proposed model. 
It shows its performance. Here, each cell represents the number 
of predictions made by the model. It indicates if the model 
accurately classified the classes. The rows and columns 
correspond to the cancer type. Because this paper works with 
nine kinds of skin cancer, the confusion matrix is 9 × 9.  The 
overall validation accuracy of 87% reported in this study was 
computed automatically during model training and evaluation 
on the entire validation dataset at each epoch. This metric 
represents the ratio of correctly predicted samples to the total 
validation samples, providing a global measure of model 
performance. In contrast, the confusion matrix presented was 
generated separately using the confusion matrix function. This 
matrix offers a detailed breakdown of the model’s predictions by 
class and may be based on a subset of the validation data or 
outputs from an earlier training checkpoint. Consequently, the 
accuracy derived directly from this confusion matrix may differ 
from the overall reported accuracy.  

 

 

3.3. VGG16 Result 

Various analyses evaluated the performance of the VGG16 
model. In this section, we explain the key findings observed 
during the model's training and validation phases. 

Figure 6 shows the visualization and changes in accuracy and 
loss during the training phase. The x-axis represents the number 
of training epochs, and the y-axis represents the corresponding 
accuracy or loss value. 

The accuracy curve in Figure 6 (a) shows the model's ability to 
classify skin cancer images correctly. This graph shows that as 
the number of epochs increases, the training and validation 
accuracy also increase. This graph shows that this model has no 
overfitting because the training and validation curves are close. 
Figure 6 (a) shows that this model can classify with 65% 
accuracy. 

The loss curve in Figure 6 (b) represents the data loss curve 
during trading. As the epoch number increases, the trading and 
validation curves decrease. This demonstrates that the proposed 
model minimizes errors while it learns. 

 
a)       b) 

Fig. 6. (a) accuracy graph and (b) loss graph of VGG16 model visualization 

 
In this section, we present and compare the outcomes of our 
proposed two models: the CNN and the VGG16 architecture. 
Our main objective was to analyze their capabilities in 
accurately classifying skin cancer. 

The proposed CNN model showcased outstanding results, 
achieving an impressive accuracy rate of 87% on the validation 
set after 20 training epochs. Figure 5 (a) visually depicts this 
performance, showing the model’s ability to classify skin cancer 
images accurately. Additionally, the curve’s trend indicates 

effective generalization without overfitting. This promising 
outcome also shows the loss curve in Figure 5 (b), which shows 
that our model successfully minimized errors throughout its 
training process. 

On the other hand, the VGG16 model shows a lower accuracy 
of 65% on the validation set after undergoing the same 25 
epochs. The accuracy curve depicted in Figure 6 (a) shows a 
similar pattern in training and validation data, indicating the 
model’s ability to generalize effectively to new samples. 
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Moreover, the loss curve in Figure 6 (b) signifies efficient error 
reduction during training, but this model has some overfitting. 

To further evaluate the VGG16 model beyond accuracy and loss 
curves, we also analyzed its classification performance using 
standard metrics. The overall F1-score from the model indicated 
an average performance because it successfully maintained 
precision and recall levels across all categories. The confusion 
matrix showed that VGG16 performed well with selected 
classes but showed unsuccessful results when identifying other 
courses, leading to numerous classification errors. The 
evaluation results deliver an expanded knowledge of VGG16 
model properties, thus making it easy to compare with the 
developed CNN model. 

4. Discussion 

The effective discovery of skin cancer and precise medical 
categorization contribute significantly to better patient survival 
and treatment success. The current diagnostic methods of expert 
analysis on biopsy specimens, dermatological examinations, and 
dermoscopic reviews demand much time and specialized 
interpretation capacity. Artificial intelligence (AI) with deep 
learning technologies shows substantial diagnostic potential in 
medical image analysis through its ability to improve accuracy 
and speed up medical diagnosis. We analyzed deep learning 
models with a customized CNN and VGG16 architecture to 
classify skin cancer types. The experimental findings showed 
that deep learning solutions generate superior outcomes than 
traditional machine learning methods through their strong 
accuracy and precision metrics, recall metrics, and F1-score 
values. The CNN-based model demonstrated better validation 
set performance, becoming the most efficient method for 
identifying skin cancer lesions. The CNN model performed 
better than VGG16 because it achieved 87% accuracy, while the 
other only managed 65%. The skin cancer classification tasks 
benefit from the CNN model because it extracts hierarchical 
features from images to generate better prediction results. The 
visual characteristics of different skin lesion types led both 
detection models to make wrong predictions despite their ability 
to classify such lesions correctly. The model encountered 
difficulties generalizing all skin lesion types because some 
categories contained insufficient training examples. The dataset 
requires a better balance between categories to enhance deep 
learning model optimization. Also, less accurate than the CNN 
model, the VGG16 model maintained dependable results 
throughout various classification scenarios. The VGG16 model 
demonstrates reliability when classifying different types of 
lesions, which shows its worth in particular cases requiring 
interpretability and class consistency. Our analysis indicates that 
CNN provides superior outcomes in detecting skin cancer 
because it performs better in accuracy and managing intricate 
features. The essential role of image preprocessing involved 
three steps: resizing, normalization procedures, data 
augmentation methods that included flips and rotations, and 
contrast adjustments to boost model effectiveness. The 
techniques implemented enhanced data consistency and 
increased diversity while concurrently reducing overfitting 
effects, making the models operate optimally on previously 
unseen pictures. Healthcare image analysis faces ongoing 
obstacles because of unbalanced classes, inconsistent image 
qualities, and inconsistent illumination and signal noise. 

Implementing advanced preprocessing methods, including 
histogram equalization and adaptive contrast adjustment, can 
address the existing issues while enhancing model performance 
outcomes. The unclear functioning of deep learning models is 
an immense barrier to their acceptance within clinical practice. 
Deep learning models, especially CNN, have displayed solid 
accuracy performance, yet their systematic decision-making 
algorithms remain unclear to interpret. Healthcare demands 
complete transparency regarding diagnostic decision-making 
because clinical staff must validate and trust model-generated 
diagnoses. Future developments should concentrate on creating 
explainable AI methods that demonstrate internal model 
operations so healthcare professionals will perceive them as 
acceptable. AI models need datasets that include diverse skin 
tones along with ethnic backgrounds and multiple skin lesion 
variations to guarantee their expanded applicability and fairness.  
Existing record datasets contain limited demographic 
representation, which generates possible prejudice in predictive 
modeling results. Using diverse datasets in deep learning model 
training helps achieve improved accuracy that leads to equal 
healthcare results. Our research proves CNNs are effective for 
initial skin cancer diagnosis, yet additional studies are needed to 
improve their deployment in medical practices. These include 
managing data variability, enhancing model explain ability, and 
optimizing computational efficiency.  The successful clinical 
application of deep learning CNN models needs a solution to 
technical platform integration issues and practical deployment 
barriers. Success depends on further advancements in AI 
diagnostic technology. It holds exceptional promise to transform 
skin cancer detection through quicker results, better accuracy, 
and broader access to early identification for worldwide patients. 

5. Conclusion 

This study aimed to investigate how Convolutional Neural 
Networks (CNNs) operate with VGG16 architectural elements 
to detect skin cancer. The proposed CNN model obtained better 
classification outcomes since it achieved 87% accuracy, which 
surpassed the VGG16 model's accuracy of 65%. CNN is more 
suitable than other methods because it effectively detects 
complex skin cancer traits, thus becoming the principal selection 
for this scientific study. The VGG16 model displayed solid 
abilities in adapting to varied class distributions, yet its poor 
performance proves that the proposed CNN model should be 
preferred for this task. It has been found that deep learning 
improves the accuracy and efficiency of spotting skin cancer. 
According to our findings, a custom CNN can be more accurate 
than VGG16 when dealing with complex tasks in medical 
classifications. Since the CNN model achieved high accuracy, it 
shows that it can be practical for use in clinics as well as in 
remote settings. Emphasizing data preprocessing and equalizing 
classes enabled our models to do better in different situations 
and had a positive effect on their generalization. Being able to 
identify nine unique types of skin cancer shows that the model 
is useful in medical practice and supports accurate diagnosis. 
Ultimately, this work helps create AI-based solutions that 
doctors and healthcare professionals can use to detect cancer 
earlier, regardless of the background of patients. The 
implementation success of CNN alongside VGG16 reinforces 
deep learning's potential to generate rapid, accurate diagnostic 
aids for dermatologists, which promotes early detection and 
enhanced treatment results. Real-life deployment requires 
addressing three crucial problems, including unbalanced classes 
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in datasets, while improving interpretability features and 
expanding applicability variations among different populations. 
For future investigations, researchers should work on creating 
better balanced data collections and integrating explainable 
artificial intelligence (XAI) methods while adopting newer 
architectures like EfficientNet and Vision Transformers (ViTs). 
Modern skin cancer detection technology advancements will 
create better accessible and reliable early detection tools to 
revolutionize clinical practice. 
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